
MVME162FX
Embedded Controller

Installation and Use
V162FXA/IH2

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

The MVME162FX Installation and Use manual provides general board-level
information, instructions for hardware preparation and installation, debugger
information, and operating instructions for the MVME162FX Embedded
Controller. The information contained in this manual applies to the following
MVME162FX models:

This manual is intended for anyone who wants to supply OEM systems, add
capability to an existing compatible system, or work in a lab environment for
experimental purposes. A basic knowledge of computers and digital logic is
assumed.

After using this manual, you may wish to become familiar with the publications
listed in the Related Documentation section in Chapter 1 of this manual.

Motorola® and the Motorola symbol are registered trademarks of Motorola, Inc.

All other products mentioned in this document are trademarks or registered
trademarks of their respective holders.

© Copyright Motorola, Inc. 1996
All Rights Reserved

Printed in the United States of America
March 1996

MVME162-410 MVME162-420 MVME162-430

MVME162-411 MVME162-421 MVME162-431

MVME162-412 MVME162-422 MVME162-432

MVME162-413 MVME162-423 MVME162-433

MVME162-440 MVME162-450 MVME162-460

MVME162-441 MVME162-451 MVME162-461

MVME162-442 MVME162-452 MVME162-462

MVME162-443 MVME162-453 MVME162-463

MVME162-510A MVME162-520A MVME162-530A

MVME162-511A MVME162-521A MVME162-531A

MVME162-512A MVME162-522A MVME162-532A

MVME162-513A MVME162-523A MVME162-533A

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor AC power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of flammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a definite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualified maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering first aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualified maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modification of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

All Motorola PWBs (printed wiring boards) are manufactured by UL-recognized
manufacturers, with a flammability rating of 94V-0.

!
WARNING

This equipment generates, uses, and can radiate electro-
magnetic energy. It may cause or be susceptible to
electro-magnetic interference (EMI) if not installed and
used in a cabinet with adequate EMI protection.

European Notice: Board products with the CE marking comply with the
EMC Directive (89/336/EEC). Compliance with this directive implies
conformity to the following European Norms:

EN55022 (CISPR 22) Radio Frequency Interference

EN50082-1 (IEC801-2, IEC801-3, IEEC801-4) Electromagnetic
Immunity

The product also fulfills EN60950 (product safety) which is essentially the
requirement for the Low Voltage Directive (73/23/EEC).

This board product was tested in a representative system to show
compliance with the above mentioned requirements. A proper installation
in a CE-marked system will maintain the required EMC/safety
performance.

ix

Contents

Chapter 1 Board Level Hardware Description

Introduction ..1-1
Overview...1-1
Related Documentation ..1-2
Support Information ...1-5
Requirements..1-5
Features ...1-6
Specifications..1-8
Cooling Requirements ..1-8
Special Considerations for Elevated Temperature Operation................. 1-9
FCC Compliance.. 1-11
Manual Terminology... 1-11

Block Diagram ..1-13
Functional Description ..1-14

Front Panel Switches and Indicators...1-14
Data Bus Structure...1-15
MC68040 or MC68LC040 MPU..1-15

MC68xx040 Cache...1-15
No-VMEbus-Interface Option ...1-16
Memory Options..1-16

DRAM Options..1-16
SRAM Options...1-17
About the Battery ..1-19
EPROM and Flash...1-20

Battery-Backed-Up RAM and Clock...1-21
VMEbus Interface and VMEchip2...1-21
I/O Interfaces ...1-22

Serial Communications Interface..1-22
IndustryPack (IP) Interfaces ..1-25
Optional LAN Ethernet Interface ...1-26
Optional SCSI Interface ..1-27
SCSI Termination ..1-27

Local Resources..1-27
Programmable Tick Timers ...1-28

x

Watchdog Timer ... 1-28
Software-Programmable Hardware Interrupts................................ 1-28
Local Bus Timeout .. 1-28

Local Bus Arbiter... 1-29
Timing Performance.. 1-29

Local Bus to DRAM Cycle Times ... 1-29
EPROM/Flash Cycle Times .. 1-30
SCSI Transfers ... 1-30
LAN DMA Transfers.. 1-31

Connectors.. 1-31
Remote Status and Control.. 1-31

Memory Maps .. 1-32
Local Bus Memory Map ... 1-32

Normal Address Range ... 1-32
VMEbus Memory Map... 1-37

VMEbus Accesses to the Local Bus .. 1-37
VMEbus Short I/O Memory Map.. 1-37

Software Initialization ... 1-37
Multi-MPU Programming Considerations.. 1-38
Local Reset Operation... 1-38

Chapter 2 Hardware Preparation and Installation

Introduction .. 2-1
Unpacking Instructions... 2-1
Hardware Preparation... 2-2

System Controller Select Header (J1).. 2-3
SIMM Selection.. 2-4

Removal of Existing SIMM.. 2-6
Installation of New SIMM ... 2-7

Synchronous Clock Select Header (J11) for Serial Port 1/Console 2-8
Clock Select Header (J12) for Serial Port 2... 2-8
SRAM Battery Backup Source Select Header (J20)................................... 2-9
EPROM Size Select Header (J21)... 2-10
General Purpose Readable Jumpers Header (J22).................................. 2-10
MPU Thermal Regulation Header (J23) ..2-11
IP Bus Clock Header (J24) .. 2-12
IP Bus Strobe Select Header (J25) .. 2-13

xi

Installation Instructions...2-13
IP Installation on the MVME162FX...2-13
MVME162FX Module Installation ..2-14
System Considerations..2-17

Chapter 3 Debugger General Information

Overview of M68000 Firmware..3-1
Description of 162Bug ...3-1
162Bug Implementation ..3-3
Installation and Startup...3-4
Autoboot..3-9
ROMboot ...3-10
Network Boot.. 3-11
Restarting the System ..3-12

Reset...3-12
Abort..3-13
Break ..3-14
SYSFAIL* Assertion/Negation..3-14
MPU Clock Speed Calculation...3-15

Memory Requirements..3-15
Terminal Input/Output Control ..3-16
Disk I/O Support ...3-17

Blocks Versus Sectors ..3-17
Device Probe Function ..3-18
Disk I/O via 162Bug Commands..3-18

IOI (Input/Output Inquiry)...3-19
IOP (Physical I/O to Disk)...3-19
IOT (I/O Teach)...3-19
IOC (I/O Control) ...3-19
BO (Bootstrap Operating System) ..3-19
BH (Bootstrap and Halt) ..3-19

Disk I/O via 162Bug System Calls..3-20
Default 162Bug Controller and Device Parameters................................ 3-21
Disk I/O Error Codes..3-22

Network I/O Support ...3-22
Intel 82596 LAN Coprocessor Ethernet Driver 3-22
UDP/IP Protocol Modules ...3-22
RARP/ARP Protocol Modules ..3-23

xii

BOOTP Protocol Module.. 3-23
TFTP Protocol Module.. 3-23
Network Boot Control Module ... 3-24
Network I/O Error Codes.. 3-24

Multiprocessor Support .. 3-24
Multiprocessor Control Register (MPCR) Method................................. 3-24
GCSR Method .. 3-26

Diagnostic Facilities... 3-27
Manufacturing Test Process.. 3-27

Chapter 4 Using the 162Bug Debugger

Entering Debugger Command Lines .. 4-1
Syntactic Variables... 4-2

Expression as a Parameter... 4-2
Address as a Parameter ... 4-4
Address Formats... 4-4
Offset Registers ... 4-6

Port Numbers... 4-8
Entering and Debugging Programs .. 4-9
Calling System Utilities from User Programs.. 4-9
Preserving the Debugger Operating Environment....................................... 4-10

162Bug Vector Table and Workspace .. 4-10
Hardware Functions ..4-11
Exception Vectors Used by 162Bug..4-11

Using 162Bug Target Vector Table... 4-13
Creating a New Vector Table.. 4-13
162Bug Generalized Exception Handler ... 4-15

Floating Point Support .. 4-17
Single Precision Real ... 4-18
Double Precision Real ... 4-18
Extended Precision Real ... 4-18
Packed Decimal Real... 4-19
Scientific Notation ... 4-19

The 162Bug Debugger Command Set... 4-20

xiii

Chapter 5 Configure and Environment Commands

Configure Board Information Block ..5-1
Set Environment to Bug/Operating System ..5-3

Configuring the IndustryPacks ...5-19

Appendix A Serial Interconnections

Introduction ...A-1
EIA-232-D Connections..A-1

Interface Characteristics ..A-4
EIA-530 Connections ..A-5

Interface Characteristics ..A-7
EIA-485/EIA-422 Connections..A-9

Interface Characteristics ..A-10
Proper Grounding ...A-12

Appendix B IndustryPack Interconnections

Introduction ..B-1

Appendix C Disk/Tape Controller Data

Controller Modules Supported ... C-1
Default Configurations... C-2
IOT Command Parameters.. C-5

Appendix D Network Controller Data

Network Controller Modules Supported ..D-1

Appendix E Troubleshooting CPU Boards: Solving Startup Problems

Introduction ..E-1

xiv

Figures

Figure 1-1. MVME162FX Block Diagram... 1-13
Figure 2-1. MVME162FX Switches, Headers, Connectors,

Fuses, and LEDs .. 2-5
Figure 2-2. Serial Interface Module, Connector Side 2-6
Figure 2-3. MVME162FX EIA-232-D Connections,

MVME712M (Sheet 1 of 6) ... 2-20
Figure 2-4. MVME162FX EIA-530 Connections (Sheet 1 of 2) 2-26
Figure 2-5. MVME162FX EIA-232-D Connections,

MVME712A/AM/-12/-13 (Sheet 1 of 4) 2-28
Figure 2-6. MVME162FX EIA-485/EIA-422 Connections 2-32

Tables

Table 1-1. MVME162FX Specifications.. 1-8
Table 1-2. Local Bus Arbitration Priority .. 1-29
Table 1-3. DRAM Performance .. 1-30
Table 1-4. Local Bus Memory Map .. 1-33
Table 1-5. Local Bus I/O Devices Memory Map ... 1-35
Table 2-1. Serial Interface Module Part Numbers ... 2-6
Table 4-1. Debugger Address Parameter Formats... 4-5
Table 4-2. Exception Vectors Used by 162Bug...4-11
Table 4-3. Debugger Commands.. 4-20
Table 5-1. ENV Command Parameters ... 5-4
Table A-1. EIA-232-D Interconnections.. A-2
Table A-2. EIA-232-D Interface Transmitter Characteristics......................... A-4
Table A-3. EIA-232-D Interface Receiver Characteristics A-4
Table A-4. Serial Port B EIA-530 Interconnect Signals................................... A-5
Table A-5. EIA-530 Interface Transmitter Characteristics A-8
Table A-6. EIA-530 Interface Receiver Characteristics................................... A-8
Table A-7. Serial Port B EIA-485/EIA-422 Interconnect Signals A-9
Table A-8. EIA-485 Interface Transmitter (Generator) Characteristics...... A-11
Table A-9. EIA-485 Interface Receiver (Load) Characteristics.................... A-11
Table E-1. Basic Troubleshooting Steps for ALL CPU Boards........................E-1
Table E-2. Troubleshooting MVME147 Series Boards Only...........................E-2
Table E-3. Troubleshooting MVME162 Series Boards Only...........................E-6

xv

Table E-4. Troubleshooting
MVME166/167/176/177/187/188/188A Series Boards OnlyE-8

Table E-5. Troubleshooting MVME197 Series Boards OnlyE-10

Index

xvi

1

1-1

1Board Level Hardware
Description

Introduction
This chapter describes the board level hardware features of the
MVME162FX Embedded Controller. The chapter is organized with
a board level overview and features list in this introduction,
followed by a more detailed hardware functional description. Front
panel switches and indicators are included in the detailed hardware
functional description. The chapter closes with some general
memory maps.

All MVME162FX programmable registers that reside in ASICs are
covered in the MVME162FX Embedded Controller Programmer's
Reference Guide.

Overview

The MVME162FX is based on the MC68040 or MC68LC040
microprocessor. Various versions of the MVME162FX have 4MB,
8MB, or 16MB of unprotected DRAM, 8KB of SRAM (with battery
backup), time of day clock (with battery backup), Ethernet
transceiver interface, two serial ports with EIA-232-D or EIA-530 or
EIA-485/422 interface, six tick timers, watchdog timer, a PROM
socket, 1MB Flash memory (one Flash device), four IndustryPack
(IP) interfaces with DMA, SCSI bus interface with DMA, VMEbus
controller, and 512 KB of SRAM with battery backup.

The I/O on the MVME162FX is connected to the VMEbus P2
connector. The main board is connected through a P2 transition
board and cables to the transition boards. The MVME162FX
supports the transition boards MVME712-12, MVME712-13,
MVME712M, MVME712A, MVME712AM, and MVME712B
(referred to in this manual as MVME712x, unless separately
specified). The MVME712x transition boards provide configuration
headers and industry-standard connectors for I/O devices.

1-2

Board Level Hardware Description
1

The I/O connection for the serial ports on the MVME162FX is also
implemented with two DB25 front panel I/O connectors. The
MVME712 series transition boards were designed to support the
MVME167 boards, but can be used on the MVME162FX if you take
some special precautions. (Refer to the section on the Serial
Communications Interface, later in this chapter, for more
information.) These transition boards provide configuration
headers, serial port drivers and industry-standard connectors for
the I/O devices.

The VMEbus interface is provided by an ASIC called the
VMEchip2. The VMEchip2 includes two tick timers, a watchdog
timer, programmable map decoders for the master and slave
interfaces, and a VMEbus to/from local bus DMA controller, a
VMEbus to/from local bus non-DMA programmed access
interface, a VMEbus interrupter, a VMEbus system controller, a
VMEbus interrupt handler, and a VMEbus requester.

Processor-to-VMEbus transfers can be D8, D16, or D32. VMEchip2
DMA transfers to the VMEbus, however, can be D16, D32,
D16/BLT, D32/BLT, or D64/MBLT.

The MC2 chip ASIC provides four tick timers, the interface to the
LAN chip, SCSI chip, serial port chip, BBRAM, the programmable
interface for the DRAM and/or SRAM mezzanine board, and a
Flash write enable signal.

The IndustryPack Interface Controller (IP2 chip) ASIC provides
control and status information, including DMA control, for up to
four single-size IndustryPacks (IPs) or up to two double-size IPs
that can be plugged into the MVME162FX main module.

Related Documentation

The MVME162FX does not ship with all of the documentation that
is available for the product. Instead, the MVME162FX ships with a
start-up installation and use document (the document you are
presently reading) that includes all the information necessary to
begin working with these products: installation instructions,
jumper configuration information, memory maps,

Introduction

1-3

1

debugger/monitor commands, and any other information needed
for start-up of the board. The installation and use document is
V162FXA/IH for the MVME162FX.

The following publications are applicable to the MVME162FX and
may provide additional helpful information. They may be
purchased by contacting your local Motorola sales office. Non-
Motorola documents may be purchased from the sources listed.

Notes Although not shown in the above list, each Motorola
Computer Group manual publication number is
suffixed with characters which represent the revision
level of the document, such as "/xx2" (the second
revision of a manual); a supplement bears the same
number as a manual but has a suffix such as "/xx2A1"
(the first supplement to the second edition of the
manual).

Document Title
Motorola
Publication Number

MVME162Bug Diagnostics Manual V162DIAA/UM

Debugging Package for Motorola 68K CISC CPUs User's Manual 68KBUG1/D and
68KBUG2/D

Single Board Computers SCSI Software User's Manual SBCSCSI/D

MVME162FX Embedded Controller Programmer's Reference Guide V162FXA/PG

MVME712M Transition Module and P2 Adapter Board User's Manual MVME712M/D

MVME712-12, MVME712-13, MVME712A, MVME712AM, and
MVME712B Transition Modules and LCP2 Adapter Board User's
Manual

MVME712A/D

SIMM09 Serial Interface Module Installation Guide SIMM09A/IH

M68040 Microprocessors User's Manual M68040UM

1-4

Board Level Hardware Description
1

These manuals may also be ordered in documentation sets as
follows:

LK-162FXSET for use with the MVME162FX.

V162DIAA/UM
68KBUG1/D
68KBUG2/D
SBCSCSI/D
V162FXA/PG

To further assist your development effort, Motorola has collected
user's manuals for each of the peripheral controllers used on the
MVME162FX and other boards from the suppliers. This bundle
includes manuals and data sheets, including the following:

68-1X7DS for use with the MVME162FX and MVME167.

NCR 53C710 SCSI Controller Data Manual and Programmer's
Guide
Intel i82596 Ethernet Controller User's Manual
Cirrus Logic CD2401 Serial Controller User's Manual
SGS-Thompson MK48T08 NVRAM/TOD Clock Data Sheet

The following publications are also available from the sources
indicated.

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std 1014-1987, The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017 (VMEbus Specification). This is also
available as Microprocessor system bus for 1 to 4 byte data, IEC 821
BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3, rue de Varembé, Geneva, Switzerland.

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document
X3.131-198X, Revision 10c; Global Engineering Documents, P.O. Box
19539, Irvine, CA 92714.

IndustryPack Logic Interface Specification, Revision 1.0; GreenSpring
Computers, Inc., 1204 O'Brien Drive, Menlo Park, CA 94025.

Introduction

1-5

1

Z85230 Serial Communications Controller data sheet; Zilog, Inc., 210
Hacienda Ave., Campbell, California 95008-6609.

82596CA Local Area Network Coprocessor Data Sheet, order number
290218; and 82596 User's Manual, order number 296853; Intel
Corporation, Literature Sales, P.O. Box 58130, Santa Clara, CA
95052-8130.

NCR 53C710 SCSI I/O Processor Data Manual, order number
NCR53C710DM; and NCR 53C710 SCSI I/O Processor Programmer’s
Guide, order number NCR53C710PG; NCR Corporation,
Microelectronics Products Division, Colorado Springs, CO.

MK48T08(B) Timekeeper TM and 8Kx8 Zeropower TM RAM data sheet
in Static RAMs Databook, order number DBSRAM71; SGS-
THOMPSON Microelectronics Group; North & South American
Marketing Headquarters, 1000 East Bell Road, Phoenix, AZ 85022-
2699.

28F008SA Flash Memory Data Sheet, order number 2904351; Intel
Literature Sales, P.O. Box 7641, Mt. Prospect, IL 60056-7641.

Support Information

You can obtain connector interconnect signal information, parts
lists, and schematics for the MVME162FX free of charge by
contacting your local Motorola sales office.

Requirements

These boards are designed to conform to the requirements of the
following documents:

❏ VMEbus Specification (IEEE 1014-87)

❏ EIA-232-D Serial Interface Specification, EIA

❏ SCSI Specification, ANSI

❏ IndustryPack Specification, GreenSpring

1-6

Board Level Hardware Description
1

Features

❏ 32 MHz 32-bit MC68040 Microprocessor,
or 25 MHz 32-bit MC68040 or MC68LC040 microprocessor

❏ 4MB, 8MB, or 16MB of shared DRAM with no protection

❏ 512KB of SRAM with battery backup

❏ One JEDEC standard 32-pin PLCC EPROM socket

❏ One Intel 28F008SA 1M x 8 Flash memory device (1MB Flash
memory total)

❏ 8K by 8 Non-Volatile RAM and time of day clock with battery
backup

❏ Four 32-bit Tick Timers (in the MC2 chip ASIC) for periodic
interrupts

❏ Two 32-bit Tick Timers (in the VMEchip2 ASIC) for periodic
interrupts

❏ Watchdog timer

❏ Eight software interrupts (for MVME162FX versions that
have the VMEchip2)

❏ I/O

– Two serial ports (one EIA-232-D DCE; one EIA-232-D
DCE/DTE or EIA-530 DCE/DTE or EIA-422 DCE/DTE or
EIA-485)

– Serial port controller (Zilog Z85230)

– Optional Small Computer Systems Interface (SCSI) bus
interface with 32-bit local bus burst Direct Memory Access
(DMA) (NCR 53C710 controller)

– Optional LAN Ethernet transceiver interface with 32-bit
local bus DMA (Intel 82596CA controller)

– Four MVIP IndustryPack interfaces with DMA

Introduction

1-7

1

❏ VMEbus interface (boards may be special-ordered without
the VMEbus interface)

– VMEbus system controller functions

– VMEbus interface to local bus (A24/A32,
D8/D16/D32 (D8/D16/D32/D64 BLT) (BLT = Block
Transfer)

– Local bus to VMEbus interface (A16/A24/A32,
D8/D16/D32)

– VMEbus interrupter

– VMEbus interrupt handler

– Global CSR for interprocessor communications

– DMA for fast local memory - VMEbus transfers
(A16/A24/A32,
D16/D32 (D16/D32/D64 BLT)

❏ Switches and Light-Emitting Diodes (LEDs)

– Two pushbutton switches (ABORT and RESET)

– Eight LEDs (FAIL, STAT, RUN, SCON, LAN, FUSE, SCSI, and
VME)

1-8

Board Level Hardware Description
1

Specifications

General specifications for the MVME162FX are listed in Table 1-1.

NOTE: Refer to the following sections on Cooling Requirements and
Special Considerations for Elevated Temperature Operation.

Cooling Requirements

The Motorola MVME162FX Embedded Controller is specified,
designed, and tested to operate reliably with an incoming air
temperature range from 0˚ to 55˚ C (32˚ to 131˚ F) with forced air
cooling at a velocity typically achievable by using a 100 CFM axial
fan. Temperature qualification is performed in a standard Motorola

Table 1-1. MVME162FX Specifications

Characteristics Specifications

Power requirements
(with PROM; without IPs)

+5 Vdc (± 5%), 3.5 A typical, 4.5 A max.
+12 Vdc (± 5%), 100 mA (max.)
-12 Vdc (± 5%), 100 mA (max.)

Operating temperature 0˚ to 70˚ C exit air with forced air cooling (see
NOTE)

Storage temperature -40˚ to +85˚ C

Relative humidity 5% to 90% (noncondensing)

Physical dimensions
PC board with
mezzanine module
only

Height
Depth
Thickness

PC board with
connectors and
front panel

Height
Depth
Thickness

Double-high VMEboard

9.187 inches (233.35 mm)
6.299 inches (160.00 mm)
0.662 inch (16.77 mm)

10.309 inches (261.85 mm)
7.4 inches (188 mm)
0.80 inch (20.32 mm)

Introduction

1-9

1

VMEsystem chassis. Twenty-five-watt load boards are inserted in
two card slots, one on each side, adjacent to the board under test, to
simulate a high power density system configuration. An assembly
of three axial fans, rated at 100 CFM per fan, is placed directly under
the VME card cage. The incoming air temperature is measured
between the fan assembly and the card cage, where the incoming
airstream first encounters the controller under test. Test software is
executed as the controller is subjected to ambient temperature
variations. Case temperatures of critical, high power density
integrated circuits are monitored to ensure component vendors
specifications are not exceeded.

While the exact amount of airflow required for cooling depends on
the ambient air temperature and the type, number, and location of
boards and other heat sources, adequate cooling can usually be
achieved with 10 CFM and 490 LFM flowing over the controller.
Less airflow is required to cool the controller in environments
having lower maximum ambients. Under more favorable thermal
conditions, it may be possible to operate the controller reliably at
higher than 55˚ C with increased airflow. It is important to note that
there are several factors, in addition to the rated CFM of the air
mover, which determine the actual volume and speed of air flowing
over the controller.

Special Considerations for Elevated Temperature Operation

The following information is for users whose applications for the
MVME162FX may subject it to high temperatures.

The MVME162FX uses commercial grade devices. Therefore, it can
operate in an environment with ambient air temperature from 0˚ C
to 70˚ C. There are many factors that affect the ambient temperature
seen by components on the MVME162FX: inlet air temperature; air
flow characteristics; number, types, and locations of IndustryPack
(IP) modules; power dissipation of adjacent boards in the system,
etc.

1-10

Board Level Hardware Description
1

A temperature profile of the MVME162FX (MVME162-513) was
developed in an MVME945 12-slot VME chassis. This board was
loaded with one GreenSpring IP-Dual P/T module (position a) and
three GreenSpring IP-488 modules (positions b, c, and d). One
twenty-five watt load board was installed adjacent to each side of
the board under test. The exit air velocity was approximately 200
LFM between the MVME162FX and the IP-Dual P/T module.
Under these circumstances, a 10˚ C rise between the inlet and exit
air was observed. At 70˚ C exit air temperature (60˚ C inlet air), the
junction temperatures of devices on the MVME162FX were
calculated (from the measured case temperatures) and did not
exceed 100˚ C.

!
Caution

For elevated temperature operation, the user must
perform similar measurements and calculations to
determine what operating margin exists for any specific
environment.

The following are some steps that the user can take to help make
elevated temperature operation possible:

1. Position the MVME162FX board in the chassis for maximum
airflow over the component side of the board.

2. Avoid placing boards with high power dissipation adjacent
to the MVME162FX.

3. Use low power IP modules only. The preferred locations for
IP modules are position a (J2 and J3) and position d (J18 and
J19).

Introduction

1-11

1

FCC Compliance

The MVME162FX was tested without IndustryPacks in an FCC-
compliant chassis and meets the requirements for Class A
equipment. FCC compliance was achieved under the following
conditions:

1. Shielded cables on all external I/O ports.

2. Cable shields connected to earth ground via metal shell
connectors bonded to a conductive module front panel.

3. Conductive chassis rails connected to earth ground. This
provides the path for connecting shields to earth ground.

4. Front panel screws properly tightened.

For minimum RF emissions, it is essential that the conditions above
be implemented. Failure to do so could compromise the FCC
compliance of the equipment containing the module.

Manual Terminology

Throughout this manual, a convention is used which precedes data
and address parameters by a character identifying the numeric
format as follows:

For example, "12" is the decimal number twelve, and "$12" is the
decimal number eighteen.

Unless otherwise specified, all address references are in
hexadecimal notation.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is
low.

$ dollar specifies a hexadecimal character

% percent specifies a binary number

& ampersand specifies a decimal number

1-12

Board Level Hardware Description
1

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on
high to low transition.

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
signal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

Data and address sizes are defined as follows:

❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the
least significant.

❏ A two-byte is 16 bits, numbered 0 through 15, with bit 0 being
the least significant. For the MVME162FX and other CISC
modules, this is called a word.

❏ A four-byte is 32 bits, numbered 0 through 31, with bit 0 being
the least significant. For the MVME162FX and other CISC
modules, this is called a longword.

The terms control bit, status bit, true, and false are used extensively in
this document. The term control bit is used to describe a bit in a
register that can be set and cleared under software control. The term
true is used to indicate that a bit is in the state that enables the
function it controls. The term false is used to indicate that the bit is
in the state that disables the function it controls. In all tables, the
terms 0 and 1 are used to describe the actual value that should be
written to the bit, or the value that it yields when read. The term
status bit is used to describe a bit in a register that reflects a specific
condition. The status bit can be read by software to determine
operational or exception conditions.

Block Diagram

1-13

1

Block Diagram
Figure 1-1 is a general block diagram of the MVME162FX.

Figure 1-1. MVME162FX Block Diagram

FLASH
MEMORY

Z85230
SCC

SERIAL IO

MK48T08
BBRAM

& CLOCK

53C710
SCSI

DRAM

82596CA
LAN

ETHERNET

MC2 chip

VMEbus

VMEchip2

1559 9412

IP2 chip SRAM
PROM

SOCKET

MC68040
OR

MC68LC040

1-14

Board Level Hardware Description
1

Functional Description
This section contains a functional description of the major blocks on
the MVME162FX Embedded Controller.

Front Panel Switches and Indicators

There are switches and LEDs on the front panel of the
MVME162FX. The switches are RESET and ABORT. The RESET
switch resets all onboard devices and drives SYSRESET* if the
board is system controller. The RESET switch may be disabled by
software.

When enabled by software, the ABORT switch generates an interrupt
at a user-programmable level. It is normally used to abort program
execution and return to the debugger.

There are eight LEDs on the MVME162FX front panel: FAIL, STAT,
RUN, SCON, LAN, FUSE (LAN power), SCSI, and VME.

The red FAIL LED (part of DS1) lights when the BRDFAIL signal line
is active.

The MC68040 status lines are decoded, on the MVME162FX, to
drive the yellow STAT (status) LED (part of DS1). In this case, a halt
condition from the processor lights the LED.

The green RUN LED (part of DS2) lights when the local bus TIP*
signal line is low. This indicates one of the local bus masters is
executing a local bus cycle.

The green SCON LED (part of DS2) lights when the VMEchip2 is the
VMEbus system controller.

The green LAN LED (part of DS3) lights when the LAN chip is local
bus master.

The MVME162FX supplies +12 Vdc power to the Ethernet
transceiver interface through a fuse. The green FUSE (LAN power)
LED (part of DS3) lights when power is available to the transceiver
interface.

Functional Description

1-15

1

1Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip
is local bus master.

The green VME LED (part of DS4) lights when the board is using the
VMEbus (VMEbus AS* is asserted by the VMEchip2) or when the
board is accessed by the VMEbus (VMEchip2 is the local bus
master).

Data Bus Structure

The local data bus on the MVME162FX is a 32-bit synchronous bus
that is based on the MC68040 bus, and which supports burst
transfers and snooping. The various local bus master and slave
devices use the local bus to communicate. The local bus is arbitrated
by priority type arbiter and the priority of the local bus masters
from highest to lowest is: 82596CA LAN, IndustryPack DMA,
53C710 SCSI, VMEbus, and MPU. Generally speaking, any master
can access any slave; however, not all combinations pass the
common sense test. Refer to the MVME162FX Embedded Controller
Programmer's Reference Guide and to the user's guide for each device
to determine its port size, data bus connection, and any restrictions
that apply when accessing the device.

MC68040 or MC68LC040 MPU

The MC68040 or MC68LC040 processor is used on the
MVME162FX. The MC68040 has on-chip instruction and data
caches and a floating point processor, and optional high drive I/O
buffers. The major difference between the two processors is that the
MC68040 has a floating point coprocessor. Refer to the M68040
Microprocessor User's Manual for more information.

MC68xx040 Cache

The MVME162FX local bus masters (VMEchip2, MC68xx040,
53C710 SCSI controller, and 82596CA Ethernet controller) have
programmable control of the snoop/caching mode. The IP DMA
local bus master’s snoop control function is controlled by jumper
settings at J26. J26 controls the value of the snoop control signals for

1-16

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

all IP DMA transfers. This includes the IP DMA which is executed
when the DMA control registers are updated while the IP DMA is
operating in the command chaining mode. The MVME162FX local
bus slaves which support MC68xx040 bus snooping are defined in
the Local Bus Memory Map table later in this chapter.

No-VMEbus-Interface Option

The MVME162FX can be operated as an embedded controller
without the VMEbus interface. For this option, the VMEchip2 and
the VMEbus buffers are not populated. Also, the bus grant daisy
chain and the interrupt acknowledge daisy chain have zero-ohm
bypass resistors installed.

To support this feature, certain logic in the VMEchip2 has been
duplicated in the MC2 chip. This logic is inhibited in the MC2 chip
if the VMEchip2 is present. The enables for these functions are
controlled by software and MC2 chip hardware initialization.

Note that MVME162FX models ordered without the VMEbus
interface are shipped with Flash memory blank (the factory uses the
VMEbus to program the Flash memory with debugger code). To
use the 162Bug package, MVME162Bug, be sure that jumper header
J22 is configured for the EPROM memory map. Refer to Chapters 3
and 4 for further details. For ordering information, contact your
local Motorola sales office.

Memory Options

The following memory options are used on the different versions of
MVME162FX boards.

DRAM Options

The MVME162FX implementation includes a 4MB, 8MB, or 16MB
DRAM option. The DRAM architecture is non-interleaved for 4MB
and 8MB, while the 16MB architecture is interleaved. The 4MB
DRAM option is located entirely on the MVME162FX base board;
the 8MB and 16MB options include 4MB or 12MB on a mezzanine
module. The DRAM is not parity protected.

Functional Description

1-17

1

If the base board is populated with 4MB, the compatible
mezzanines are ones that start at four. (i.e. the mezzanine address
map starts at four MB.) Therefore for 4MB base boards, the DRAM
on the mezzanine appear contiguous to the DRAM on the base
board.

The software can determine how much memory is on the base
board by examining the seventh bit (bit 23) of the register at offset
address $25. This bit is set upon MC2 chip initialization by a
hardware state machine. DRAM performance is specified in the
section on the DRAM Memory Controller in the MC2 chip
Programming Model in the MVME162FX Embedded Controller
Programmer's Reference Guide.

The following table defines the combinations of base board and
mezzanine population options used for the MVME162FX series of
modules.

SRAM Options

The MVME162FX implementation includes a 512KB SRAM option.
SRAM architecture is single non-interleaved. SRAM performance is
specified in the section on the SRAM Memory Controller in the
MC2 chip Programming Model in the MVME162FX Embedded
Controller Programmer's Reference Guide. A battery supplies VCC to
the SRAMs when main power is removed. The worst case elapsed
time for battery protection is 200 days.

The SRAM arrays are not parity protected.

Mezzanine
MB

Base Board
MB

Available
DRAM

Interleaved
MC2 chip Size

(@ register offset
$25)

0 4 4 N 100
4 (bank 2) 4 8 N 101

12 (banks 2,
3, and 4)

4 16 Y 111

1-18

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

The MVME162FX SRAM battery backup function is provided by a
Dallas DS1210S. The DS1210S supports primary and secondary
power sources. When the main board power fails, the DS1210S
selects the source with the highest voltage. If one source should fail,
the DS1210S switches to the redundant source. Each time the board
is powered, the DS1210S checks power sources and if the voltage of
the backup sources is less than two volts, the second memory cycle
is blocked. This allows software to provide an early warning to
avoid data loss. Because the DS1210S may block the second access,
the software should do at least two accesses before relying on the
data.

The MVME162FX provides jumpers (on J20) that allow either
power source of the DS1210S to be connected to the VMEbus +5V
STDBY pin or to one cell of the onboard battery. For example, the
primary system backup source may be a battery connected to the
VMEbus +5V STDBY pin and the secondary source may be the
onboard battery. If the system source should fail or the board is
removed from the chassis, the onboard battery takes over. Refer to
Chapter 2 for the jumper configurations.

!
Caution

For proper operation of the SRAM, some jumper
combination must be installed on the Backup Power
Source Select Header (J20). If one of the jumpers is used
to select the battery, the battery must be installed on the
MVME162FX. The SRAM may malfunction if inputs to
the DS1210S are left unconnected.

The SRAM is controlled by the MC2 chip, and the access time is
programmable. Refer to the MC2 chip description in the
MVME162FX Embedded Controller Programmer’s Reference Guide for
more detail.

Functional Description

1-19

1

About the Battery

The power source for the onboard SRAM is a RAYOVAC FB1225
battery with two BR1225 type lithium cells which is socketed for
easy removal and replacement. A small capacitor is provided to
allow the battery to be quickly replaced without data loss.

The lifetime of the battery is very dependent on the ambient
temperature of the board and the power-on duty cycle. The lithium
battery supplied on the MVME162FX should provide at least two
years of backup time with the board powered off and with an
ambient temperature of 40˚ C. If the power-on duty cycle is 50% (the
board is powered on half of the time), the battery lifetime is four
years. At lower ambient temperatures the backup time is greatly
extended and may approach the shelf life of the battery.

When a board is stored, the battery should be disconnected to
prolong battery life. This is especially important at high ambient
temperatures. The MVME162FX is shipped with the batteries
disconnected (i.e., with VMEbus +5V standby voltage selected as
both primary and secondary power source). If you intend to use the
battery as a power source, whether primary or secondary, it is
necessary to reconfigure the jumpers on J20 before installing the
module. Refer to SRAM Backup Power Source Select Header J20 in
Chapter 2 for available jumper configurations.

The power leads from the battery are exposed on the solder side of
the board, therefore the board should not be placed on a conductive
surface or stored in a conductive bag unless the battery is removed.

!
Warning

Lithium batteries incorporate inflammable materials
such as lithium and organic solvents. If lithium batteries
are mistreated or handled incorrectly, they may burst
open and ignite, possible resulting in injury and/or fire.
When dealing with lithium batteries, carefully follow
the precautions listed below in order to prevent
accidents.

1-20

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

❏ Do not short circuit.

❏ Do not disassemble, deform, or apply excessive pressure.

❏ Do not heat or incinerate.

❏ Do not apply solder directly.

❏ Do not use different models, or new and old batteries
together.

❏ Do not charge.

❏ Always check proper polarity.

To remove the battery from the module, carefully pull the battery
from the socket.

Before installing a new battery, ensure that the battery pins are
clean. Note the battery polarity and press the battery into the
socket. When the battery is in the socket, no soldering is required.

EPROM and Flash

The MVME162FX implementation includes 1MB of Flash memory
(an 8-Mbit Flash device organized as a 1M x 8). For information on
programming Flash, refer to the Intel documents listed in Related
Documentation in this chapter.

The Flash write enable is controlled by a bit in the Flash Access
Time Control Register in the MC2 chip. Refer to the MVME162FX
Embedded Controller Programmer’s Reference Guide for more detail.

The EPROM location is a standard JEDEC 32-pin PLCC capable of
4 Mbit densities organized as a 512KB x 8 device. Depending on a
jumper setting (GPIO3, pins 9-10 on J22), the MC68xx040 reset code
can be fetched from either the Flash (GPIO3 installed) or EPROM
(GPIO3 removed).

Note that MVME162FX models ordered without the VMEbus
interface are shipped with Flash memory blank (the factory uses the
VMEbus to program the Flash memory with debugger code). To

Functional Description

1-21

1

use the 162Bug package, MVME162Bug, be sure that jumper header
J22 is configured for the EPROM memory map. Refer to Chapters 3
and 4 for further details.

Battery Backed Up RAM and Clock

The MK48T08 RAM and clock chip is used on the MVME162FX.
This chip provides a time-of-day clock, oscillator, crystal, power
failure detection, 8KB of RAM, and a battery in one 28-pin package.
The clock provides seconds, minutes, hours, day, date, month, and
year in BCD 24-hour format. Corrections for 28- day, 29-day (leap
year), and 30-day months are automatically made. No interrupts
are generated by the clock. The MK48T08 is an 8 bit device;
however, the interface provided by the MC2 chip supports 8-bit, 16-
bit, and 32-bit accesses to the MK48T08. Refer to the MC2 chip
description in the MVME162FX Embedded Controller Programmer's
Reference Guide and to the MK48T08 data sheet for detailed
programming and battery life information.

VMEbus Interface and VMEchip2

The local bus to VMEbus interface and the VMEbus to local bus
interface are provided by the optional VMEchip2. The VMEchip2
can also provide the VMEbus system controller functions. Refer to
the VMEchip2 description in the MVME162FX Embedded Controller
Programmer's Reference Guide for detailed programming
information.

Note that the ABORT switch logic in the VMEchip2 is not used. The
GPI inputs to the VMEchip2 which are located at $FFF40088 bits 7-
0 are not used. The ABORT switch interrupt is integrated into the
MC2 chip ASIC at location $FFF42043. The GPI inputs are
integrated into the MC2 chip ASIC at location $FFF4202C bits 23-16.

1-22

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

I/O Interfaces

The MVME162FX provides onboard I/O for many system
applications. The I/O functions include serial ports, IndustryPack
(IP) interfaces, optional LAN Ethernet transceiver interface, and
optional SCSI mass storage interface.

Serial Communications Interface

The MVME162FX uses a Zilog Z85230 serial communications
controller to implement the two serial communications interfaces.
Each interface supports CTS, DCD, RTS, and DTR control signals;
as well as the TxD and RxD transmit/receive data signals, and
TxC/RxC synchronous clock signals.

The Z85230 supports synchronous (SDLC/HDLC) and
asynchronous protocols. The MVME162FX hardware supports
asynchronous serial baud rates of 110b/s to 38.4Kb/s.

The Z85230 supplies an interrupt vector during interrupt
acknowledge cycles. The vector is modified based upon the
interrupt source within the Z85230. Interrupt request levels are
programmed via the MC2 chip. (One MC2 chip can handle up to
four Z85230 chips.) Refer to the Z85230 data sheet listed in this
chapter, and to the MC2 chip Programming Model in the
MVME162FX Embedded Controller Programmer's Reference Guide, for
information.

MVME162FX Serial Port 1

The A port of the Z85230 is interfaced as DCE (data circuit-
terminating equipment) with the EIA-232-D interface and is routed
to:

❏ The DB-25 connector marked SERIAL PORT 1/CONSOLE on
the front panel of the MVME162FX. SERIAL PORT
1/CONSOLE is an EIA-232-D DCE port.

Functional Description

1-23

1

NOTE: This port can be connected to the TX and RX clocks
which may be present on the DB-25 connector. These
connections are made via jumper header J11 on the
MVME162FX board. (The TxC and RxC clock lines are not
available on the MVME712x transition modules.)

❏ One of the following output connectors on the MVME712x
transition module:

MVME712M: The DB-25 connector marked SERIAL PORT 2
on the front panel. SERIAL PORT 2 can be configured as an
EIA-232-D DTE or DCE port, via jumper headers J16 and J17.

MVME712A or MVME712-12: The DB-9 connector marked
SERIAL PORT 2 on the front panel. SERIAL PORT 2 is
hardwired as an EIA-232-D DTE port.

MVME712AM or MVME712-13: The DB-9 connector marked
SERIAL PORT 2 OR the RJ-11 jack on the front panel. SERIAL
PORT 2 is hardwired as EIA-232-D DTE; the RJ-11 jack
utilizes the built-in modem. Setting the jumper headers J16
and J17 on the MVME712AM/-13 configures the output as
EIA-232-D DTE at SERIAL PORT 2 or as a modem at the RJ-
11 jack.

Figure 2-3 (sheets 1 and 2) in Chapter 2 illustrates the two
configurations available for Port A when the MVME162FX is used
with an MVME712M. Figure 2-5 (sheets 1 and 2) shows the two
configurations available for Port A when the MVME162FX is used
with an MVME712A/AM/-12/-13.

MVME162FX Serial Port 2

The configuration of the B port of the Z85230 is determined via a
Serial Interface Module (SIMM) which is installed at connector J10
on the MVME162FX board. There are five SIMMs available:

SIMM05 -- DTE with EIA-232-D interface
SIMM06 -- DCE with EIA-232-D interface
SIMM07 -- DTE with EIA-530 interface
SIMM08 -- DCE with EIA-530 interface
SIMM09 -- EIA-485 interface, or DCE or DTE with EIA-422 interface

1-24

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Port B is routed, via the SIMM, to:

❏ The DB-25 connector marked SERIAL PORT 2 on the front
panel of the MVME162FX. SERIAL PORT 2 will be an EIA-
232-D DCE or DTE port, or an EIA-530 DCE or DTE port, or
an EIA-485 port, or an EIA-422 DCE or DTE port, depending
upon which SIMM is installed.

Note This port can be connected to the TX and RX clocks
which may be present on the DB-25 connector. These
connections are made via jumper header J12 on the
MVME162FX board. (The TxC and RxC clock lines are
available at the MVME712M SERIAL PORT 4 via
header J15, but are not available on the other
MVME712x transition modules.)

❏ One of the following output connectors on the MVME712x
transition module:

MVME712M: The DB-25 connector marked SERIAL PORT 4
on the front panel. SERIAL PORT 4 can be configured as an
EIA-232-D DTE or DCE port, via the jumper headers J18 and
J19 on the MVME712M.

MVME712A, AM, -12, or -13: The DB-9 connector marked
SERIAL PORT 4 on the front panel. SERIAL PORT 4 is hard-
wired as an EIA-232-D DTE port.

Figure 2-3 (sheets 3 through 6) in Chapter 2 illustrates the four
configurations available for Port B when the MVME162FX is used
with an MVME712M. Note that the port configurations shown in
Figure 2-3 sheets 5 and 6 are not recommended for synchronous
applications because of the incorrect clock direction. Figure 2-4
(sheets 1 and 2) shows an MVME162FX with the two configurations
available with EIA-530 SIMMs. Figure 2-5 (sheets 3 and 4) shows
the two configurations available for Port B when the MVME162FX
is used with an MVME712A/AM/-12/-13. Figure 2-6 shows an
MVME162FX with the configuration available with the EIA-485
/EIA-422 SIMM.

Functional Description

1-25

1

!
Caution

Do not simultaneously connect serial data devices to the
equivalent ports on the MVME712 series transition
module and the MVME162FX front panel. This could
result in simultaneous transmission of conflicting data.

!
Caution

Do not connect peripheral devices to Port 1, Port 3, or
the Centronics printer port on the MVME712x transition
module. In the EIA-232-D case, none of these ports are
connected to any MVME162 circuits. In the EIA-530
case, attempting to use these ports would produce
certain connections with the potential to damage the
MVME162 or the peripherals.

!
Caution

When using an EIA-530 SIMM or an EIA-485/EIA-422
SIMM, do not connect the MVME162FX to an
MVME712x board. The EIA-530, EIA-485, and EIA-422
signals are not supported by the P2 adapter and the
transition boards.

IndustryPack (IP) Interfaces

The IP2 chip ASIC on the MVME162FX supports four IndustryPack
(IP) interfaces: these are accessible from the front panel. The IP2 also
includes four DMA channels (one for each IP, or two for each
double size IP), 32MHz or 8MHz IndustryPack clock selection
(jumper selectable), and one programmable timebase strobe which
is connected to the four interfaces. Refer to the IP2 chip
Programming Model in the MVME162FX Embedded Controller
Programmer's Reference Guide for details of the IP interface. Refer to
Appendix B for the pin assignments of the IP connectors.

1-26

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Notes The MVME162FX boards do not monitor power supply
+5 Vdc power and assert IP reset if the power falls too
low. Instead, IP reset is handled by the ENV command
of the 162Bug debugger, as described in Chapter 5.

Two IP modules plugged into the same MVME162FX
board can not use the Strobe∗ line to communicate with
each other, because the Strobe∗ signal is an output from
the IP2 chip to all four IP modules that plug into the
same MVME162FX.

Optional LAN Ethernet Interface

The MVME162FX uses the 82596CA to implement the Ethernet
transceiver interface. The 82596CA accesses local RAM using DMA
operations to perform its normal functions. Because the 82596CA
has small internal buffers and the VMEbus has an undefined
latency period, buffer overrun may occur if the DMA is
programmed to access the VMEbus. Therefore, the 82596CA should
not be programmed to access the VMEbus.

Every MVME162FX that has the Ethernet interface is assigned an
Ethernet Station Address. The address is $08003E2xxxxx where
xxxxx is the unique 5-nibble number assigned to the board (i.e.,
every MVME162FX has a different value for xxxxx).

Each board has an Ethernet Station Address displayed on a label
attached to the VMEbus P2 connector. In addition, the six bytes
including the Ethernet address are stored in the configuration area
of the BBRAM. That is, 08003E2xxxxx is stored in the BBRAM. At an
address of $FFFC1F2C, the upper four bytes (08003E2x) can be read.
At an address of $FFFC1F30, the lower two bytes (xxxx) can be read.
The MVME162FX debugger has the capability to retrieve or set the
Ethernet address.

If the data in the BBRAM is lost, the user should use the number on
the VMEbus P2 connector label to restore it.

Functional Description

1-27

1

The Ethernet transceiver interface is located on the MVME162FX
main board, and the industry DB15 standard connector is located
on the MVME712x transition board.

Support functions for the 82596CA are provided by the MC2 chip
ASIC. Refer to the 82596CA user's guide for detailed programming
information.

Optional SCSI Interface

The MVME162FX may provide for mass storage subsystems
through the industry-standard SCSI bus. These subsystems may
include hard and floppy disk drives, streaming tape drives, and
other mass storage devices. The SCSI interface is implemented
using the NCR 53C710 SCSI I/O controller.

Support functions for the 53C710 are provided by the MC2 chip
ASIC. Refer to the 53C710 user's guide for detailed programming
information.

SCSI Termination

The system configurer must ensure that the SCSI bus is properly
terminated at both ends. On the MVME162FX, sockets are provided
for the terminators on the P2 adapter board or the LCP2 adapter
board. If the SCSI bus ends at the adapter board, then termination
resistors must be installed on the adapter board. +5V power to the
SCSI bus TERM power line and termination resistors is provided
through a fuse located on the adapter board.

Local Resources

The MVME162FX includes many resources for the local processor.
These include tick timers, software-programmable hardware
interrupts, watchdog timer, and local bus timeout.

1-28

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Programmable Tick Timers

Six 32-bit programmable tick timers with 1 µs resolution are
provided, two in the VMEchip2 and four in the MC2 chip. The tick
timers can be programmed to generate periodic interrupts to the
processor. Refer to the VMEchip2 and MC2 chip in the
MVME162FX Embedded Controller Programmer's Reference Guide for
detailed programming information.

Watchdog Timer

A watchdog timer function is provided in the VMEchip2 and the
MC2 chip. When the watchdog timer is enabled, it must be reset by
software within the programmed time or it times out. The
watchdog timer can be programmed to generate a SYSRESET
signal, local reset signal, or board fail signal if it times out. Refer to
the VMEchip2 and the MC2 chip in the MVME162FX Embedded
Controller Programmer's Reference Guide for detailed programming
information.

The watchdog timer logic is duplicated in the VMEchip2 and MC2
chip ASICs. Because the watchdog timer function in the VMEchip2
is a superset of that function in the MC2 chip (system reset
function), the timer in the VMEchip2 is used in all cases except for
the version of the MVME162FX which does not include the
VMEbus interface ("No VMEbus Interface" option).

Software-Programmable Hardware Interrupts

Eight software-programmable hardware interrupts are provided
by the VMEchip2. These interrupts allow software to create a
hardware interrupt.

Local Bus Timeout

The MVME162FX provides a timeout function in the VMEchip2
and the MC2 chip for the local bus. When the timer is enabled and
a local bus access times out, a Transfer Error Acknowledge (TEA)
signal is sent to the local bus master. The timeout value is selectable
by software for 8 µsec, 64 µsec, 256 µsec, or infinity. The local bus

Functional Description

1-29

1

timer does not operate during VMEbus bound cycles. VMEbus
bound cycles are timed by the VMEbus access timer and the
VMEbus global timer.

The access timer logic is duplicated in the VMEchip2 and MC2 chip
ASICs. Because the local bus timer in the VMEchip2 can detect an
offboard access and the MC2 chip local bus timer cannot, the timer
in the VMEchip2 is used in all cases except for the version of the
MVME162FX which does not include the VMEbus interface ("No-
VMEbus-Interface option").

Local Bus Arbiter

The local bus arbiter implements a fixed priority which is described
in the following table.

Timing Performance

This section gives performance information for the MVME162FX.
The MVME162FX is designed to operate at 25 MHz or 32 MHz.

Local Bus to DRAM Cycle Times

The DRAM base address, array size, and device size are
programmable. The DRAM controller assumes an interleaved
architecture if the DRAM size requires eight physical devices (that

Table 1-2. Local Bus Arbitration Priority

Device Priority Note

LAN 0 Highest

IP DMA 1 ...

SCSI 2 ...

VMEbus 3 Next Lowest

MC68040 4 Lowest

1-30

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

is, when memory array size is 4MB and DRAM technology is 4
Mbits per device; or when memory array size is 16MB and DRAM
technology is 16 Mbits per device.)

Parity checking and parity exception action is also programmable.
The DRAM array size and device size are initialized in the DRAM
Space Size Register.

EPROM/Flash Cycle Times

The EPROM/Flash cycle time is programmable from 3 to 10 bus
clocks/byte (4 bytes = 12 to 40). (The actual cycle time may vary
depending on the device speed.) The data transfers are 32 bits wide.
Refer to the MVME162FX Embedded Controller Programmer's
Reference Guide.

SCSI Transfers

The MVME162FX includes an SCSI mass storage bus interface with
DMA controller. The SCSI DMA controller uses a FIFO buffer to
interface the 8-bit SCSI bus to the 32-bit local bus. The FIFO buffer
allows the SCSI DMA controller to efficiently transfer data to the
local bus in four longword bursts. This reduces local bus usage by
the SCSI device. Refer to the MC2chip Programming Model in the
MVME162FX Embedded Controller Programmer's Reference Guide.

Table 1-3. DRAM Performance

Clock Budget Operating Conditions

4,2,2,2 Non-interleaved, read, 25 MHz

4,1,1,1 Interleaved, read, 25 MHz

3,2,2,2 Write, 25 MHz

5,3,3,3 Non-interleaved, read, 32 MHz

5,2,2,2 Interleaved, read, 32 MHz

4,2,2,2 Write, 32 MHz

Functional Description

1-31

1

The transfer rate of the DMA controller is 44MB/sec at 32 MHz with
parity off and interleaved DRAM and read cycles. Assuming a
continuous transfer rate of 5MB/sec on the SCSI bus, 12% of the
local bus bandwidth is used by transfers from the SCSI bus.

LAN DMA Transfers

The MVME162FX includes a LAN interface with DMA controller.
The LAN DMA controller uses a FIFO buffer to interface the serial
LAN bus to the 32-bit local bus. The FIFO buffer allows the LAN
DMA controller to efficiently transfer data to the local bus.

The 82596CA does not execute MC68040 compatible burst cycles,
therefore the LAN DMA controller does not use burst transfers.
DRAM write cycles require 3 clock cycles at 25 MHz or 4 clock
cycles at 32 MHz, and read cycles require 5 clock cycles.

The transfer rate of the LAN DMA controller is 20MB/sec at 25
MHz or 32 MHz. Assuming a continuous transfer rate of 1MB/sec
on the LAN bus, 5% of the local bus bandwidth is used by transfers
from the LAN bus.

Connectors

The MVME162FX has two 96-position DIN connectors: P1 and P2.
P1 rows A, B, C, and P2 row B provide the VMEbus interconnection.
P2 rows A and C provide the connection to the SCSI bus, serial
ports, and Ethernet. The serial ports on the MVME162FX are also
connected to two 25-pin DB-25 female connectors J9 and J15 on the
front panel. The four IPs connect to the MVME162FX by four pairs
of 50-pin connectors. Four 50-pin connectors behind the front panel
are for external connections to IP signals. The memory chip
mezzanine board is plugged into two 40-pin connectors.

Remote Status and Control

The remote status and control connector, J4, is a 20-pin connector
located behind the front panel of the MVME162FX. It provides
system designers with flexibility in accessing critical indicator and

1-32

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

reset functions. When the MVME162FX board is enclosed in a
chassis and the front panel is not visible, this connector allows the
RESET, ABORT, and LED functions to be extended to the control
panel of the system, where they are visible. Alternatively, this
allows a system designer to construct a RESET/ABORT/LED panel
that can be located remotely from the MVME162FX.

Memory Maps
There are two points of view for memory maps: 1) the mapping of
all resources as viewed by local bus masters (local bus memory
map), and 2) the mapping of onboard resources as viewed by
VMEbus Masters (VMEbus memory map).

The memory and I/O maps which are described in the following
tables are correct for all local bus masters. There is some address
translation capability in the VMEchip2. This allows multiple
MVME162FXs on the same VMEbus with different virtual local bus
maps as viewed by different VMEbus masters.

Local Bus Memory Map

The local bus memory map is split into different address spaces by
the transfer type (TT) signals. The local resources respond to the
normal access and interrupt acknowledge codes.

Normal Address Range

The memory map of devices that respond to the normal address
range is shown in the following tables. The normal address range is
defined by the Transfer Type (TT) signals on the local bus. On the
MVME162FX, Transfer Types 0, 1, and 2 define the normal address
range. Table 1-4 is the entire map from $00000000 to $FFFFFFFF.
Many areas of the map are user-programmable, and suggested uses
are shown in the table. The cache inhibit function is programmable
in the MC68xx040 MMU. The onboard I/O space must be marked
cache inhibit and serialized in its page table. Table 1-5 further
defines the map for the local I/O devices.

Memory Maps

1-33

1

Table 1-4. Local Bus Memory Map

Address
Range

Devices
Accessed

Port
Width

Size
Software

 Cache
Inhibit

Note(s)

Programmable DRAM on board D32 4MB-16MB N 2

Programmable SRAM D32 128KB-2MB N 2

Programmable VMEbus A32/A24 D32/D16 -- ? 4

Programmable IP a Memory D32-D8 64KB-8MB ? 2, 4

Programmable IP b Memory D32-D8 64KB-8MB ? 2, 4

Programmable IP c Memory D32-D8 64KB-8MB ? 2, 4

Programmable IP d Memory D32-D8 64KB-8MB ? 2, 4

$FF800000-$FF9FFFFF Flash/PROM D32 2MB N 1, 5

$FFA00000-$FFBFFFFF PROM/Flash D32 2MB N 6

$FFC00000-$FFCFFFFF Not Decoded -- 1MB N 7

$FFD00000-$FFDFFFFF Not Decoded -- 1MB N 7

$FFE00000-$FFE7FFFF SRAM Default D32 512KB N --

$FFE80000-$FFEFFFFF Not Decoded -- 512KB N 7

$FFF00000-$FFFEFFFF Local I/O D32-D8 878KB Y 3

$FFFF0000-$FFFFFFFF VMEbus A16 D32/D16 64KB ? 2, 4

1-34

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Notes

1. Reset enables the decoder for this space of the memory map
so that it will decode address spaces $FF800000 - $FF9FFFFF
and $00000000 - $003FFFFF. The decode at 0 must be disabled
in the MC2 chip before DRAM is enabled. DRAM is enabled
with the DRAM Control Register at address $FFF42048, bit
24. PROM/Flash is disabled at the low address space with
PROM Control Register at address $FFF42040, bit 20.

2. This area is user-programmable. The DRAM and SRAM
decoder is programmed in the MC2 chip, the local-to-
VMEbus decoders are programmed in the VMEchip2, and the
IP memory space is programmed in the IP2 chip.

3. Size is approximate.

4. Cache inhibit depends on devices in area mapped.

5. The PROM and Flash are sized by the MC2 chip ASIC from
an 8-bit private bus to the 32-bit MPU local bus. Because the
device size is less than the allocated memory map size for
some entries, the device contents repeat for those entries.

If jumper GPI3 is installed, the Flash device is accessed. If
GPI3 is not installed, the PROM is accessed.

6. The Flash and PROM are sized by the MC2 chip ASIC from
an 8-bit private bus to the 32-bit MPU local bus. Because the
device size is less than the allocated memory map size for
some entries, the device contents repeat for those entries.

If jumper GPI3 is installed, the PROM is accessed. If GPI3 is
not installed, the Flash device is accessed.

7. These areas are not decoded unless one of the programmable
decoders are initialized to decode this space. If they are not
decoded, an access to this address range will generate a local
bus timeout. The local bus timer must be enabled.

The following table focuses on the Local I/O Devices portion
of the local bus Main Memory Map.

Memory Maps

1-35

1

Table 1-5. Local Bus I/O Devices Memory Map

Address Range Device
Port

Width
Size Note(s)

$FFF00000 - $FFF3FFFF Reserved -- 256KB 4

$FFF40000 - $FFF400FF VMEchip2 (LCSR) D32 256B 1, 3

$FFF40100 - $FFF401FF VMEchip2 (GCSR) registers D32-D8 256B 1, 3

$FFF40200 - $FFF40FFF Reserved -- 3.5KB 4, 5

$FFF41000 - $FFF41FFF Reserved -- 4KB 4

$FFF42000 - $FFF42FFF MC2 chip D32-D8 4KB 1

$FFF43000 - $FFF44FFF Reserved -- 8KB 4

$FFF45000 - $FFF45FFF SCC (Z85230) D8 4KB 1, 2

$FFF46000 - $FFF46FFF LAN (82596CA) D32 4KB 1, 6

$FFF47000 - $FFF47FFF SCSI (53C710) D32-D8 4KB 1

$FFF48000 - $FFF57FFF Reserved -- 64KB 4

$FFF58000 - $FFF5807F IP2 chip IP a I/O D16 128B 1

$FFF58080 - $FFF580FF IP2 chip IP a ID D16 128B 1

$FFF58100 - $FFF5817F IP2 chip IP b I/O D16 128B 1

$FFF58180 - $FFF581FF IP2 chip IP b ID Read D16 128B 1

$FFF58200 - $FFF5827F IP2 chip IP c I/O D16 128B 1

$FFF58280 - $FFF582FF IP2 chip IP c ID D16 128B 1

$FFF58300 - $FFF5837F IP2 chip IP d I/O D16 128B 1

$FFF58380 - $FFF583FF IP2 chip IP d ID Read D16 128B 1

$FFF58400 - $FFF584FF IP2 chip IP ab I/O D32-D16 256B 1

$FFF58500 - $FFF585FF IP2 chip IP cd I/O D32-D16 256B 1

$FFF58600 - $FFF586FF IP2 chip IP ab I/O repeated D32-D16 256B 1

$FFF58700 - $FFF587FF IP2 chip IP cd I/O repeated D32-D16 256B 1

$FFF58800 - $FFF5887F Reserved -- 128B 1

$FFF58880 - $FFF588FF Reserved -- 128B 1

$FFF58900 - $FFF5897F Reserved -- 128B 1

1-36

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Notes

1. For a complete description of the register bits, refer to the
MVME162FX Embedded Controller Programmer's Reference
Guide or to the data sheet for the specific chip.

2. The SCC is an 8-bit device located on an MC2 chip private
data bus. Byte access is required.

3. Writes to the LCSR in the VMEchip2 must be 32 bits. LCSR
writes of 8 or 16 bits terminate with a TEA signal. Writes to
the GCSR may be 8, 16 or 32 bits. Reads to the LCSR and
GCSR may be 8, 16 or 32 bits. Byte reads should be used to
read the interrupt vector.

$FFF58980 - $FFF589FF Reserved -- 128B 1

$FFF58A00 - $FFF58A7F Reserved -- 128B 1

$FFF58A80 - $FFF58AFF Reserved -- 128B 1

$FFF58B00 - $FFF58B7F Reserved -- 128B 1

$FFF58B80 - $FFF58BFF Reserved -- 128B 1

$FFF58C00 - $FFF58CFF Reserved -- 256B 1

$FFF58D00 - $FFF58DFF Reserved -- 256B 1

$FFF58E00 - $FFF58EFF Reserved -- 256B 1

$FFF58F00 - $FFF58FFF Reserved -- 256B 1

$FFFBC000 - $FFFBC01F IP2 chip registers D32-D8 2KB 1

$FFFBC800 - $FFFBC81F Reserved -- 2KB 1

$FFFBD000 - $FFFBFFFF Reserved -- 12KB 4

$FFFC0000 - $FFFC7FFF MK48T08 (BBRAM, TOD clock) D32-D8 32KB 1

$FFFC8000 - $FFFCBFFF MK48T08 D32-D8 16KB 1, 7

$FFFCC000 - $FFFCFFFF MK48T08 D32-D8 16KB 1, 7

$FFFD0000 - $FFFEFFFF Reserved -- 128KB 4

Table 1-5. Local Bus I/O Devices Memory Map (Continued)

Address Range Device
Port

Width
Size Note(s)

Memory Maps

1-37

1

4. This area does not return an acknowledge signal. If the local
bus timer is enabled, the access times out and is terminated by
a TEA signal.

5. Size is approximate.

6. Port commands to the 82596CA must be written as two 16-bit
writes: upper word first and lower word second.

7. Refer to the Flash and PROM Interface section in the MC2
chip description in the MVME162FX Embedded Controller
Programmer's Reference Guide.

VMEbus Memory Map

This section describes the mapping of local resources as viewed by
VMEbus masters. Default addresses for the slave, master, and
GCSR address decoders are provided by the ENV command. Refer
to Appendix A.

VMEbus Accesses to the Local Bus

The VMEchip2 includes a user-programmable map decoder for the
VMEbus to local bus interface. The map decoder allows you to
program the starting and ending address and the modifiers the
MVME162FX responds to.

VMEbus Short I/O Memory Map

The VMEchip2 includes a user-programmable map decoder for the
GCSR. The GCSR map decoder allows you to program the starting
address of the GCSR in the VMEbus short I/O space.

1-38

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

Software Initialization
Most functions that have been done with switches or jumpers on
other modules are done by setting control registers on the
MVME162FX. At powerup or reset, the EPROMs that contain the
162Bug debugging package set up the default values of many of
these registers.

Specific programming details may be determined by study of the
M68040 Microprocessor User's Manual. Then check the details of all
the MVME162FX onboard registers as given in the MVME162FX
Embedded Controller Programmer's Reference Guide.

Multi-MPU Programming Considerations

Good programming practice dictates that only one MPU at a time
have control of the MVME162FX control registers. Of particular
note are:

❏ Registers that modify the address map

❏ Registers that require two cycles to access

❏ VMEbus interrupt request registers

Local Reset Operation

Local reset (LRST) is a subset of system reset (SRST). Local reset can
be generated five ways:

❏ Expiration of the watchdog timer

❏ Pressing the front panel RESET switch (if the system controller
function is disabled)

❏ By asserting a bit in the board control register in the GCSR

❏ By SYSRESET*

❏ By powerup reset

Software Initialization

1-39

1

Note The GCSR allows a VMEbus master to reset the local
bus. This feature is very dangerous and should be used
with caution. The local reset feature is a partial system
reset, not a complete system reset such as powerup
reset or SYSRESET*. When the local bus reset signal is
asserted, a local bus cycle may be aborted. The
VMEchip2 is connected to both the local bus and the
VMEbus and if the aborted cycle is bound for the
VMEbus, erratic operation may result.
Communications between the local processor and a
VMEbus master should use interrupts or mailbox
locations; reset should not be used in normal
communications. Reset should be used only when the
local processor is halted or the local bus is hung and
reset is the last resort.

Any VMEbus access to the MVME162FX while it is in the reset state
is ignored. If a global bus timer is enabled, a bus error is generated.

1-40

Functional DescriptionThe green SCSI LED (part of DS4) lights when the SCSI chip is local
1

2

2-1

2Hardware Preparation and
Installation

IIntroduction
This chapter provides unpacking instructions, hardware
preparation, and installation instructions for the MVME162FX
Embedded Controller. Hardware preparation for the MVME712
series transition modules is provided in separate manuals. Refer to
the Related Documentation section in Chapter 1.

Unpacking Instructions

Note If the shipping carton is damaged upon receipt, request
carrier's agent be present during unpacking and
inspection of equipment.

Unpack the equipment from the shipping carton. Refer to the
packing list and verify that all items are present. Save the packing
material for storing and reshipping of equipment.

!
Caution

Avoid touching areas of integrated circuitry; static
discharge can damage circuits.

2-2

Hardware Preparation and Installation

2 Hardware Preparation
To select the desired configuration and ensure proper operation of
MVME162FX, modifications to certain options may be necessary
before you install the board. The MVME162FX provides software
control for most options. Modifications are performed by setting
bits in control registers after the MVME162FX has been installed in
a system. (For more information on MVME162FX registers, refer to
the MVME162FX Embedded Controller Programmer's Reference Guide
listed in Related Documentation in Chapter 1.) Some options cannot
be set in software; these are modified by installing or removing
header jumpers or interface modules.

Figure 2-1 illustrates the locations of the switches, jumper headers,
connectors, and LEDs on the MVME162FX. The MVME162FX has
been factory tested and is shipped with the factory jumper settings
described in the following sections. The MVME162FX operates with
its required and factory-installed debug monitor, MVME162Bug
(162Bug), with these factory jumper settings. Manually
configurable items are listed in the following table.

Table 2-1. Jumper-Configurable Options

Option Factory Default

System controller selection (J1) 1-2

SIMM selection for serial port B configuration (J10) SIMM06

Synchronous clock selection for Serial Port 1/Console (J11) No jumper

Synchronous clock selection for Serial Port 2 (J12) No jumper

SRAM backup power source selection (J20) 1-3, 2-4

EPROM size selection (J21) 2-3

General-purpose readable register configuration (J22) 1-2, 3-4, 5-6, 7-8, 9-10,
11-12, 13-14, 15-16

MPU thermal regulation (J23) No jumper

IP bus clock speed (J24) 1-2

IP bus strobe selection (J25) Jumper installed

IP DMA snoop control (J26) 1-2, 3-4

System Controller Select Header (J1)

2-3

2System Controller Select Header (J1)
The MVME162FX is factory-configured as a VMEbus system
controller by a jumper across J1 pins 1 and 2. If you select the
‘‘automatic’’ system controller function by moving the jumper to J1
pins 2 and 3, the MVME162FX determines whether it is the system
controller by its position on the bus. If the board is in the first slot
from the left, it configures itself as the system controller. If the
MVME162FX is not to be system controller under any
circumstances, remove the jumper from J1. When the board is
functioning as system controller, the SCON LED is turned on.

Note On MVME162FXs without the optional VMEbus
interface (i.e., no VMEchip2), the jumper may be
installed or removed without affecting normal
operation.

J1

System Controller
(factory configuration)

1

2

3

J1

Auto System Controller

J1

Not System Controller

1

2

3

1

2

3

2-4

Hardware Preparation and Installation

2 SIMM Selection

Port B of the MVME162FX’s Z85230 serial communications
controller is configurable via a serial interface module (SIMM)
which is installed at connector J10 on the MVME162FX board. Five
serial interface modules are available:

❏ EIA-232-D (DCE and DTE)

❏ EIA-530 (DCE and DTE)

❏ EIA-485/EIA-422 (DCE or DTE)

You can change Port B from an EIA-232-D to an EIA-530 interface
or to an EIA-485/EIA-422 interface (or vice-versa) by mounting the
appropriate serial interface module. Port B is routed (via the SIMM
at J10) to the 25-pin DB25 front panel connector marked SERIAL
PORT 2.

For the location of SIMM connector J10 on the MVME162FX, refer
to Figure 2-1. Figure 2-2 illustrates the secondary side (bottom) of
a serial interface module, showing the J1 connector which plugs
into SIMM connector J10 on the MVME162FX. Figure 2-3 (sheets 3-
6), Figure 2-4, Figure 2-5 (sheets 3 and 4), and Figure 2-6 illustrate
the nine configurations available for Port B.

For the part numbers of the serial interface modules, refer to Table
2-1. The part numbers are ordinarily printed on the primary side
(top) of the SIMMs, but may be found on the secondary side in some
versions.

If you need to replace an existing serial interface module with a
SIMM of another type, go to Removal of Existing SIMM below. If
there is no SIMM on the main board, skip to Installation of New
SIMM.

Figure 2-1. MVME162FX Switches, Headers, Connectors, Fuses, and LEDs

System Controller Select Header (J1)

2-5

2

Figure 1-2. MVME162FX Switches, Headers, Connectors, Fuses, and LEDs

S
1

S
2

J15
13

1

25
14

P
1

A
1

B
1

C
1

A
32

B
32

C
32

40

11393.00 9512

MVME
162-XX

P
R

IM
A

R
Y

 S
ID

E

P
2

A
32

B
32

C
32

A
1

B
1

C
1

J9
13

1

25
14

DS4

4950
12

J5

4950
12

J6

1920
J4

DS3

DS2

DS1

12

13

J1

F2

39
21

P
3

4039
21

P
4

J18

21
J12

21
J11

4039
21

J10

J20

1
2

5
6

115

16 J22

S
E

R
IA

L P
O

R
T

 2
S

E
R

IA
L P

O
R

T
 1/ C

O
N

S
O

LE

STATFAIL

RUN SCON

LAN FUSE

SCSI VME

ABORT

RESET

4950
12

J16

4950
12

J17

2

F1

3
J24

J23
F3

F
L1

F
L2

F
L3

F
L4

F
L5

F
L6

12

F5F4

F
6

F
L8

F
L9

F
L11

F
L10

F
L12

F
L7 J25

21

4 433

J13
J7

J2

J19
J14

J8
J3

49
25

271
49
25

271
49
25

271
49
25

271

49
25

271
49
25

271
49
25

271
49
25

271

3 1

J26

24

1

13

J21

2-6

Hardware Preparation and Installation

2

Figure 2-2. Serial Interface Module, Connector Side

Removal of Existing SIMM

1. Each serial interface module is retained by two 4-40 x 3/16 ”
Phillips-head screws in opposite corners. (Exception:
SIMM09 is retained by one Phillips-head screw in the center
of the module.) Remove the screw(s) and store them in a safe
place for later use.

2. Grasp opposite sides of the SIMM and gently lift straight up.

Table 2-2. Serial Interface Module Part Numbers

EIA Standard Configuration Part Number Model
Number

EIA-232-D DTE 01-W3846B SIMM05

DCE 01-W3865B SIMM06

EIA-530 DTE 01-W3868B SIMM07

DCE 01-W3867B SIMM08

EIA-485 -- 01-W3002F SIMM09

or EIA-422 DTE or DCE

SECONDARY SIDE

39 1

40 2
J1

1568 9502

System Controller Select Header (J1)

2-7

2!
Caution

Avoid lifting the SIMM by one side only, as the
connector can be damaged on the SIMM or the main
board.

3. Place the SIMM in a static-safe container for possible reuse.

Installation of New SIMM

1. Observe the orientation of the connector keys on SIMM
connector J1 and MVME162FX connector J10. Turn the SIMM
so that the keys line up and place it gently on connector J10,
aligning the mounting hole(s) at the SIMM corners (or center)
with the matching standoff(s) on the MVME162FX.

2. Gently press the top of the SIMM to seat it on the connector.
If the SIMM does not seat with gentle pressure, recheck the
orientation. If the SIMM connector is oriented incorrectly, the
mounting hole(s) will not line up with the standoff(s).

!
Caution

Do not attempt to force the SIMM on if it is oriented
incorrectly.

3. Place the one or two 4-40 x 3/16” Phillips-head screw(s) that
you previously removed (or that were supplied with the new
SIMM) into the one center or two opposite-corner mounting
hole(s). Screw it or them into the standoff(s) but do not
overtighten it or them.

The signal relationships and signal connections in the various serial
configurations available for ports A and B are illustrated in Figures
2-3, 2-4, 2-5, and 2-6.

2-8

SHardware Preparation

2 Synchronous Clock Select Header (J11) for Serial Port
1/Console

The MVME162FX is shipped from the factory with the SERIAL PORT
1/CONSOLE header configured for asynchronous communications
(i.e., jumpers removed). To select synchronous communications for
the SERIAL PORT 1/CONSOLE connection, install jumpers across pins 1
and 2 and pins 3 and 4.

Clock Select Header (J12) for Serial Port 2

The MVME162FX is shipped from the factory with the SERIAL PORT
2 header configured for asynchronous communications (i.e.,
jumpers removed). To select synchronous communications for the
SERIAL PORT 2 connection, install jumpers across pins 1 and 2 and
pins 3 and 4.

2SHardware Preparation

J11 J11

External ClockInternal Clock (factory configuration)

42 42

31 31

J12 J12

External ClockInternal Clock (factory configuration)

42 42

31 31

System Controller Select Header (J1)

2-9

2SRAM Battery Backup Source Select Header (J20)

The MVME162FX is factory-configured to use VMEbus +5V
Standby power as a backup power source for the SRAM (i.e.,
jumpers are installed across pins 1 and 3 and 2 and 4). To select the
onboard battery as the backup power source, install the jumpers
across pins 3 and 5 and 4 and 6.

Note For MVME162FXs without optional VMEbus interface
(i.e., without VMEchip2 ASIC), you must select the
onboard battery for the backup power source.

!
Caution

Removing all jumpers may temporarily disable the
SRAM. Do not remove all jumpers from J20, except for
storage.

(Factory configuration)
VMEbus +5V STBY

J20

21

65

J20

21

65

J20

21

Backup Power Disabled Onboard Battery

65

(For storage only)

2-10

SHardware Preparation

2 EPROM Size Select Header (J21)

The MVME162FX is factory-configured for a 4Mbit EPROM (i.e., a
jumper is installed across pins 2 and 3). To configure the
MVME162FX for an 8Mbit EPROM, install the jumper across pins 1
and 2.

General Purpose Readable Jumpers Header (J22)

Header J22 provides eight readable jumpers. These jumpers are
read as a register (at $FFF4202D) in the MC2 chip LCSR (local
control/status register). The bit values are read as a zero when the
jumper is installed and as a one when the jumper is removed.

With the factory-installed MVME162Bug firmware in place, four
jumpers are user-definable (pins 1-2, 3-4, 5-6, 7-8). If the
MVME162Bug firmware is removed, seven jumpers are user-
definable (pins 1-2, 3- 4, 5-6, 7-8, 11-12, 13-14, 15-16).

Note Pins 9-10 (GPIO3) are reserved to select either the Flash
memory map (jumper installed) or the EPROM
memory map (jumper removed). They are not user-
definable. See Chapter 3 for more information.

1

2

3

J21

8Mbit EPROM

1

2

3

(Factory configuration)

J21

4Mbit EPROM

System Controller Select Header (J1)

2-11

2In most cases, the MVME162FX is shipped from the factory with J22
set to all zeros (jumpers on all pins). On boards built with the no-
VMEbus option, however, no jumper is installed across pins 9-10.

MPU Thermal Regulation Header (J23)

This header is reserved for future use. Factory configuration is with
no jumper installed.

J22

15

GPIO7

GPIO6

GPIO5

GPIO1

GPIO4

GPIO3

GPIO2

1 2

16GPIO0

Flash Selected (factory configuration except on no-VMEbus models)

USER-DEFINABLE

USER-DEFINABLE

USER-DEFINABLE

REFER TO 162BUG MANUAL

USER-DEFINABLE

IN=FLASH; OUT=EPROM

REFER TO 162BUG MANUAL

REFER TO 162BUG MANUAL

162BUG INSTALLED

USER-DEFINABLE

USER-DEFINABLE

USER-DEFINABLE

USER-DEFINABLE

USER-DEFINABLE

IN=FLASH; OUT=EPROM

USER-DEFINABLE

USER-DEFINABLE

USER CODE INSTALLED

9 10

1

2

(Factory configuration)

J23

Not used

2-12

SHardware Preparation

2 IP Bus Clock Header (J24)

This header selects the speed of the IP bus clock. The IP bus clock
speed may be 8MHz (on both MVME162-4xx and -5xx boards) or
32MHz (on MVME162-5xx boards only). The factory configuration
is with a jumper between J24 pins 1 and 2 for an 8MHz clock.

If the jumper is installed between J24 pins 2 and 3, the IP bus clock
is the same as the MC68040 bus clock, that is 32MHz, allowing the
IP module to run with a 32MHz MPU. Whether the setting is 8MHz
or 32MHz, all IP ports operate at the same speed.

!
Caution

The IP32 CSR bit (IP2 chip, register at offset $1D, bit 0)
must be set to correspond to the jumper setting. This is
cleared (0) for 8MHz, or set (1) for 32MHz. If the jumper
and the bit are not configured the same, the board may
not run properly.

Note Some versions of the MVME162FX (those identified
with assembly number 01-W3960Bxxx) may have J24
factory-hardwired in the 8MHz position with a staple
between J24 pins 1 and 2, hidden beneath an IP module.

Changing the factory setting to the 32MHz setting
requires removal of the staple between pins 1 and 2,
and installation of a jumper between pins 2 and 3.

3

2

1

3

2

1

(Factory configuration)

J24

8MHz IP Bus Clock

J24

32MHz IP Bus Clock
(from MPU Bus Clock)

System Controller Select Header (J1)

2-13

2IP Bus Strobe Select Header (J25)

Some IP bus implementations make use of the Strobe∗ signal (pin
46) as an input to the IP modules from the IP2 chip. Other IP
interfaces require that the strobe be disconnected.

With a jumper installed between J25 pins 1 and 2, a programmable
frequency source is connected to the Strobe∗ signal on the IP bus
(for details, refer to the IP2 chip programming model in the
MVME162FX Programmer’s Reference Guide).

If the jumper is removed from J25, the strobe line is available for a
sideband type of messaging between IP modules. The Strobe∗
signal is not connected to any active devices on the board, but it
may be connected to a pull-up resistor.

IP DMA Snoop Control Header (J26)

J26 defines the state of the snoop control bus when an IP DMA
controller is local bus master. J26 pins 3 and 4 control Snoop Control
signal 0. J26 pins 1 and 2 control Snoop Control signal 1.

The following table lists the snoop operations represented by the
setting of J26.

2

1

J25

IP Strobe disconnected

2

1

(Factory configuration)

J25

IP Strobe connected

J26

Snoop Inhibited (factory configuration)

21

43

2-14

Hardware Preparation

2

Note Jumper installed = logic 0. Jumper removed = logic 1.

Installation Instructions
The following sections discuss the installation of IndustryPacks
(IPs) on the MVME162FX, the installation of the MVME162FX into
a VME chassis, and the system considerations relevant to the
installation. Before installing IndustryPacks, ensure that the serial
ports and all header jumpers are configured as desired.

IP Installation on the MVME162FX

Up to four IndustryPack (IP) modules may be installed on the
MVME162FX. Install the IPs on the MVME162FX as follows:

1. Each IP has two 50-pin connectors that plug into two
corresponding 50-pin connectors on the MVME162FX: J2/J3,
J7/J8, J13/J14, J18/J19. See Figure 2-1 for the MVME162FX
connector locations.

– Orient the IP(s) so that the tapered connector shells mate
properly. Plug IP_a into connectors J2 and J3; plug IP_b
into J7 and J8. Plug IP_c into J13 and J14; plug IP_d into J18
and J19. If a double-sized IP is used, plug IP_ab into J2, J3,
J7, and J8; plug IP_cd into J13, J14, J18, and J19.

2Hardware Preparation

Table 2-3. J26 Snoop Control Encoding

Pins
1-2

(SC1)

Pins
3-4

(SC0)

Requested Snoop Operation

Alternate Bus Master Read Access Alternate Bus Master Write Access

0 0 Inhibit Snooping Inhibit Snooping

0 1 Supply Dirty Data, Leave Dirty Data Sink Byte/Word/Longword

1 0 Supply Dirty Data, Leave Dirty Data Invalidate Line

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

Installation Instructions

2-15

22. Four additional 50-pin connectors (J6, J5, J17, and J16) are
provided behind the MVME162FX front panel for external
cabling connections to the IP modules. There is a one-to-one
correspondence between the signals on the cabling
connectors and the signals on the associated IP connectors
(i.e., J6 has the same IP_a signals as J2; J5 has the same IP_b
signals as J7; J17 has the same IP_c signals as J13; and J16 has
the same IP_d signals as J18.

– Connect user-supplied 50-pin cables to J6, J5, J17, and J16
as needed. Because of the varying requirements for each
different kind of IP, Motorola does not supply these cables.

– Bring the IP cables out the narrow slots in the
MVME162FX front panel and attach them to the
appropriate external equipment, depending on the nature
of the particular IP(s).

MVME162FX Module Installation

With EPROM, IndustryPack, and SIMMs installed and headers
properly configured, proceed as follows to install the MVME162FX
in the VME chassis:

1. Turn all equipment power OFF and disconnect the power
cable from the AC power source.

!
Caution

Inserting or removing modules while power is applied
could result in damage to module components.

!
Warning

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

2. Remove the chassis cover as instructed in the user's manual
for the equipment.

2-16

Hardware Preparation

2 3. Remove the filler panel from the card slot where you are
going to install the MVME162FX.

– If you intend to use the MVME162FX as system controller,
it must occupy the leftmost card slot (slot 1). The system
controller must be in slot 1 to correctly initiate the bus-
grant daisy-chain and to ensure proper operation of the
IACK daisy-chain driver.

– If you do not intend to use the MVME162FX as system
controller, it can occupy any unused double-height card
slot.

4. Slide the MVME162FX into the selected card slot. Be sure the
module is seated properly in the P1 and P2 connectors on the
backplane. Do not damage or bend connector pins.

5. Secure the MVME162FX in the chassis with the screws
provided, making good contact with the transverse mounting
rails to minimize RF emissions.

6. Install the MVME712 series transition module in the front or
the rear of the VME chassis. (To install an MVME712M, which
has a double-wide front panel, you may need to shift other
modules in the chassis.)

7. On the chassis backplane, remove the INTERRUPT
ACKNOWLEDGE (IACK) and BUS GRANT (BG) jumpers from the
header for the card slot occupied by the MVME162FX.

Note Some VME backplanes (e.g., those used in Motorola
‘‘Modular Chassis’’ systems) have an autojumpering
feature for automatic propagation of the IACK and BG
signals. Step 7 does not apply to such backplane
designs.

Installation Instructions

2-17

28. Connect the P2 Adapter Board or LCP2 Adapter Board and
cable(s) to MVME162FX backplane connector P2. This
provides a connection point for terminals or other peripherals
at the EIA-232-D serial ports, SCSI ports, and LAN Ethernet
port.

For information on installing the P2 or LCP2 Adapter Board
and the MVME712 series transition module(s), refer to the
manuals listed in Related Documentation in Chapter 1 (the
MVME162FX Embedded Controller Programmer's Reference
Guide provides some connection diagrams.)

Note If you intend to use the MVME162FX with Port B in an
EIA-530 configuration or an EIA-485/EIA-422
configuration, do not install the P2 or LCP2 Adapter
Board and the MVME712 series transition module.
They are incompatible with the EIA-530 interface and
the EIA-485/EIA-422 interface (refer to MVME162FX
Serial Port 2 in Chapter 1, Functional Description).

9. Connect the appropriate cable(s) to the panel connectors for
the serial ports, SCSI port, and LAN Ethernet port.

– Note that some cables are not provided with the
MVME712 series module and must be made or purchased
by the user. (Motorola recommends shielded cable for all
peripheral connections to minimize radiation.)

10. Connect the peripheral(s) to the cable(s). Appendix A
supplies detailed information on the EIA-232-D, EIA-530, and
EIA-485/EIA-422 signals supported. Appendix B describes
the SCSI (Small Computer System Interface) I/O bus
connections. Appendix C describes the Ethernet LAN (Local
Area Network) port connections.

11. Install any other required VMEmodules in the system.

12. Replace the chassis cover.

13. Connect the power cable to the AC power source and turn the
equipment power ON.

2-18

Hardware Preparation

2 System Considerations

The MVME162FX draws power from VMEbus backplane
connectors P1 and P2. P2 is also used for the upper 16 bits of data in
32-bit transfers, and for the upper 8 address lines used in extended
addressing mode. The MVME162FX may not function properly
without its main board connected to VMEbus backplane connectors
P1 and P2.

Whether the MVME162FX operates as VMEbus master or VMEbus
slave, it is configured for 32 bits of address and 32 bits of data
(A32/D32). However, it handles A16 or A24 devices in the address
ranges indicated in Chapter 1. D8 and/or D16 devices in the system
must be handled by the MC68040/MC68LC040 software. Refer to
the memory maps in the MVME162FX Embedded Controller
Programmer's Reference Guide.)

The MVME162FX contains shared onboard DRAM whose base
address is software-selectable. Both the onboard processor and
offboard VMEbus devices see this local DRAM at base physical
address $00000000, as programmed by the MVME162Bug
firmware. This may be changed via software to any other base
address. Refer to the MVME162FX Embedded Controller
Programmer's Reference Guide for more information.

If the MVME162FX tries to access offboard resources in a
nonexistent location and is not system controller, and if the system
does not have a global bus timeout, the MVME162FX waits forever
for the VMEbus cycle to complete. This will cause the system to lock
up. There is only one situation in which the system might lack this
global bus timeout: when the MVME162FX is not the system
controller and there is no global bus timeout elsewhere in the
system.

Multiple MVME162FXs may be installed in a single VME chassis. In
general, hardware multiprocessor features are supported.

Installation Instructions

2-19

2Note If you are installing multiple MVME162FXs in an
MVME945 chassis, do not install an MVME162FX in
slot 12. The height of the IP modules may cause
clearance difficulties in that slot position.

Other MPUs on the VMEbus can interrupt, disable, communicate
with, and determine the operational status of the processor(s). One
register of the GCSR (global control/status register) set includes
four bits that function as location monitors to allow one
MVME162FX processor to broadcast a signal to any other
MVME162FX processors. All eight registers are accessible from any
local processor as well as from the VMEbus.

The MVME162FX provides +5 Vdc power to the remote
LED/switch connector (J4) through a 1A fuse (F1) located near J4.
Connector J4 is the interface for a remote control and indicator
panel. If none of the LEDs light and the ABORT and RESET switches
do not operate, check fuse F1.

The MVME162FX provides +12 Vdc power to the Ethernet
transceiver interface through a 1A fuse (F2) located near diode CR1.
The FUSE LED lights to indicate that +12 Vdc is available. When the
MVME712M module is used, the yellow DS1 LED on the
MVME712M illuminates when LAN power is available, which
indicates that the fuse is good. If the Ethernet transceiver fails to
operate, check fuse F2.

The MVME162FX provides SCSI terminator power through a 1A
fuse (F1) located on the P2 Adapter Board or LCP2 Adapter Board.
If the fuse is blown, the SCSI device(s) may function erratically or
not at all. When the P2 Adapter Board is used with an MVME712M
and the SCSI bus is connected to the MVME712M, the green DS2
LED on the MVME712M front panel illuminates when SCSI
terminator power is available. If the green DS2 LED flickers during
SCSI bus operation, check P2 Adapter Board fuse F1.

Figures 2-3, 2-4, 2-5, and 2-6 on the following pages illustrate the
signal relationships and signal connections in the various serial
configurations available for ports A and B.

2-20

Hardware Preparation

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 1 of 6)

FRONT PANEL

+12V

P2-C27

P2-C28

P2-C29

P2-C30

P2-C31

P2-C32

TXD2

RXD2

RTS2

CTS2

DTR2

DCD2

PORT 1
D

R

D

D

D

D

D

R

R

R

Z85230

A PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC

1
3

2
4

J11

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J17

TO TERMINAL
J16

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME 712M EIA- 232-D DTE CONFIGURATION (TO MODEM)

712M TRANSITION
MODULE
PORT 2

MVME162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

10970.00 (1-6) 9405

DSR

TXC

RXC

TXCO

DB25

Installation Instructions

2-21

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 2 of 6)

FRONT PANEL

+12V

P2-C27

P2-C28

P2-C29

P2-C30

P2-C31

P2-C32

TXD2

RXD2

RTS2

CTS2

DTR2

DCD2

PORT 1
D

R

D

D

D

D

D

R

R

R

Z85230

A PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC

1
3

2
4

J11

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J17

TO TERMINAL
J16

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME712M EIA-232-D DCE CONFIGURATION (TO TERMINAL)

712M TRANSITION
MODULE
PORT 2

MVME162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

10970.00 (2-6) 9405

DSR

TXC

RXC

TXCO

DB25

2-22

Hardware Preparation

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 3 of 6)

FRONT PANEL

+12V

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

D

R

R

R

Z85230

B PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC3

J12

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J19

TO TERMINAL
J18

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME712M EIA-232-D DTE CONFIGURATION (TO MODEM)

712M TRANSITION
MODULE
PORT 4

MVME 162 EIA-232-D DTE CONFIGURATION
 (TO MODEM)

10970.00 (3-6) 9405

DSR

TXC

RXC

TXCO

DB25

SIM05

+5V1

4

2

J15

P2-A32

P2-A28

RTXC

TRXC

NOTE: WITH DTE MODULE, THE RECEIVE CLOCK OF 85230 ON B INTERFACE
 MUST BE PROGRAMMED AS INPUT TO PREVENT BUFFER CONTENTION

RTXC4

TRXC4

NC

R

EIA-232-D DTE

Installation Instructions

2-23

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 4 of 6)

FRONT PANEL

+12V

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

D

D

D

R

R

R

Z85230

B PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC3

J12

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J19

TO TERMINAL
J18

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME 162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

10970.00 (4-6) 9405

DSR

TXC

RXC

TXCO

DB25

+5V

1

4

2

J15

P2-A32

P2-A28

RTXC

TRXC

RTXC4

TRXC4

712M TRANSITION
MODULE
PORT 4

MVME712M EIA-232-D DCE CONFIGURATION (TO TERMINAL)

SIM06
EIA-232-D DCE

2-24

Hardware Preparation

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 5 of 6)

FRONT PANEL

+12V

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

D

R

R

R

Z85230

B PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC3

J12

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J19

TO TERMINAL
J18

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME712M EIA-232-D CONFIGURATION (TO TERMINAL)

MVME 162 EIA-232-D DTE CONFIGURATION
 (TO MODEM)

10970.00 (5-6) 9405

DSR

TXC

RXC

TXCO

DB25

+5V1

4

2

J15

P2-A32

P2-A28

RTXC

TRXC

1. WITH DTE MODULE AND MVME 712 JUMPERED AS TO TERMINAL,
 THE CLOCKS (TXC AND RXC) ARE THE WRONG DIRECTION.

RTXC4

TRXC4

NC

R

 THE CLOCKS ARE BOTH INPUTS. THEY SHOULD BOTH BE OUTPUTS.

NOTES:

 2. WITH DTE MODULE, THE RECEIVE CLOCK OF 85230 ON B INTERFACE
MUST BE PROGRAMMED AS INPUT TO PREVENT BUFFER CONTENTION.

712M TRANSITION
MODULE
PORT 4

SIM05
EIA-232-D DTE

Installation Instructions

2-25

2

Figure 2-3. MVME162FX EIA-232-D Connections, MVME712M (Sheet 6 of 6)

FRONT PANEL

+12V

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

R

R

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

TO MODEM
J19

TO TERMINAL
J18

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME712M EIA-232-D DTE CONFIGURATION (TO MODEM)

MVME 162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

10970.00 (6-6) 9405

DSR

TXC

RXC

TXCO

DB25

J15

P2-A32

P2-A28

RTXC

TRXC

 WITH DCE MODULE AND MVME 712 JUMPERED AS TO TERMINAL,
 THE CLOCKS (TXC AND RXC) ARE THE WRONG DIRECTION.

RTXC4

TRXC4

 THE CLOCKS ARE BOTH OUTPUTS. THEY SHOULD BOTH BE INPUTS.

NOTE:

D

D

D

R

3

J12

+5V

1

4

2

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

Z85230

B PORT

712M TRANSITION
MODULE
PORT 4

SIM06
EIA-232-D DCE

2-26

Hardware Preparation

2

Figure 2-4. MVME162FX EIA-530 Connections (Sheet 1 of 2)

10971.00 (1-2) 9405

4

TXD_B
TXD_A
RXD_B
RXD_A
RTS_B
RTS_A
CTS_B
CTS_A
DTR_B
DTR_A
DCD_B
DCD_A
DSR_B

DSR_A
TXC_B
TXC_A

RXC_B
RXC_A

TXCO_B
TXCO_A

TM_A
LL_A
RL_A

PIN 7

TXD_B
TXD_A

RXD_B
RXD_A

RTS_B
RTS_A

CTS_B
CTS_A

DTR_B
DTR_A

DCD_B
DCD_A

DSR_B
DSR_A

TXC_B
TXC_A

RXC_B
RXC_A

TXCO_B
TXCO_A

TM_A

LL_A

RL_A

PIN 1

PIN 14
PIN 2

PIN 16
PIN 3

PIN 19
PIN 4

PIN 13
PIN 5

PIN 23
PIN 20

PIN 10
PIN 8

PIN 22
PIN 6

PIN 12
PIN 15

PIN 9
PIN 17

PIN 11
PIN 24

PIN 25

PIN 18

PIN 21

PIN 7

PORT

FRONT PANEL
DB 25

R

D

NC

D

+5V

+5V

NC

R

R

R

D

R

R

RTS

21

3

J12

D

+5V

NC

2

P2 CONNECTOR

P2-C18

P2-A25
P2-A19

P2-A26
P2-C19

P2-A27
P2-C26

P2-A29
P2-A23
P2-A30
P2-C22
P2-A31
P2-A22

P2-A20
P2-C24
P2-A32

P2-C21
P2-A28

P2-C23
P2-A24

P2-C25
P2-C20
P2-A21

MVME 162 EIA-530 DTE CONFIGURATION
 (TO MODEM)

D

D

SIM07
EIA-530 DTE

Z85230

B PORT

TXD

RXD

CTS*

DTR*

DCD*

TXC

RXC

RTS*

Installation Instructions

2-27

2

Figure 2-4. MVME162FX EIA-530 Connections (Sheet 2 of 2)

10971.00 (2-2) 9405

4

TXD_B
TXD_A
RXD_B
RXD_A
RTS_B
RTS_A
CTS_B
CTS_A
DTR_B
DTR_A
DCD_B
DCD_A
DSR_B

DSR_A
TXC_B
TXC_A

RXC_B
RXC_A

TXCO_B
TXCO_A

TM_A
LL_A
RL_A

TXD_B
TXD_A

RXD_B
RXD_A

CTS_B
CTS_A

DTR_B
DTR_A

DCD_B
DCD_A

DSR_B
DSR_A

TXC_B
TXC_A

RXC_B
RXC_A

TXCO_B

TXCO_A

TM_A

LL_A

RL_A

PORT

FRONT PANEL
DB 25

Z85230

B PORT

TXD

RXD

CTS*

DTR*

DCD*

TXC

RXC

21

3

J12

+5V

NC

2

P2 CONNECTOR

P2-C18

P2-A25
P2-A19

P2-A26
P2-C19

P2-A27
P2-C26

P2-A29
P2-A23
P2-A30
P2-C22
P2-A31
P2-A22

P2-A20
P2-C24
P2-A32

P2-C21
P2-A28

P2-C23
P2-A24

P2-C25
P2-C20
P2-A21

D

R

D

R

D

R

D

D

D

R

D
+5V

NC

NC

PIN 7

PIN 1

PIN 14
PIN 2

PIN 16
PIN 3

PIN 13
PIN 5

PIN 23
PIN 20

PIN 10
PIN 8

PIN 22
PIN 6

PIN 12
PIN 15

PIN 9
PIN 17

PIN 11
PIN 24

PIN 25

PIN 18

PIN 21

PIN 7

RTS*

MVME 162 EIA-530 DCE CONFIGURATION
 (TO TERMINAL)

RTS_B

RTS_A
PIN 19
PIN 4

SIM08
EIA-530 DCE

2-28

Hardware Preparation

2

Figure 2-5. MVME162FX EIA-232-D Connections, MVME712A/AM/-12/-13
(Sheet 1 of 4)

FRONT PANEL

+12V

P2-C27

P2-C28

P2-C29

P2-C30

P2-C31

P2-C32

TXD2

RXD2

RTS2

CTS2

DTR2

DCD2

PORT 1
D

R

D

D

D

D

D

R

R

R

Z85230

A PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC

1
3

2
4

J11

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

SERIAL PORT 2

MODEM PORT 2
J17

P2

TXD

RXD

RTS

CTS

DTR

DCD

MVME 712A/AM/-12/-13 PORT 2 CONFIGURED AS EIA-232-D SERIAL PORT

712A/AM/12/13
TRANSITION MODULE

PORT 2

MVME162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

11020.00 9406 (1-4)

DSR
CABLE

MTXD

J16

PIN 3

PIN 2

PIN 7

PIN 8

PIN 4

PIN 1

PIN 6

PIN 2

PIN 3

DB9

1.5KJ9
DCE DTE

NOTES:

1. SERIAL PORT 2 IS HARD-WIRED DTE. USE NULL MODEM CABLE FOR DCE.

2. TO ATTACH TERMINAL, CONNECT J9 TO "DCE" FOR DSR SIGNAL.

MODEM
(712AM/712-13

ONLY)

MRXD

MCTS

MDTR

MDCD

TIP

RING

RJ11

Installation Instructions

2-29

2

Figure 2-5. MVME162FX EIA-232-D Connections, MVME712A/AM/-12/-13
(Sheet 2 of 4)

+12V

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

SERIAL PORT 2

MODEM PORT 2
J17

MVME 712AM/-13 PORT 2 CONFIGURED AS MODEM

712AM/13
TRANSITION MODULE

PORT 2

DSR

MTXD

J16

PIN 2

PIN 3

1.5KJ9
DCE DTE

NOTE:

USING SERIAL PORT 2 AS A MODEM PORT REQUIRES CONNECTION TO

MODEM
(712AM/712-13

ONLY)

MRXD

MCTS

MDTR

MDCD

TIP

RING

RJ11

FRONT PANEL

P2-C27

P2-C28

P2-C29

P2-C30

P2-C31

P2-C32

TXD2

RXD2

RTS2

CTS2

DTR2

DCD2

PORT 1
D

R

D

D

D

D

D

R

R

R

Z85230

A PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC

1
3

2
4

J11

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME162 EIA-232-D DCE CONFIGURATION
 (TO TERMINAL)

11020.00 9406 (2-4)

+5/+12/-12Vdc BACKPLANE POWER, A DATA CABLE AT THE DB9 CONNECTOR,
AND A TELCO CABLE AT THE RJ11 CONNECTOR. REFER TO THE USER’S
MANUAL FOR THIS MODULE (MVME712A) FOR SETUP INSTRUCTIONS.

PIN 3

PIN 2

PIN 7

PIN 8

PIN 4

PIN 1

PIN 6

DB9

2-30

Hardware Preparation

2

Figure 2-5. MVME162FX EIA-232-D Connections, MVME712A/AM/-12/-13
(Sheet 3 of 4)

+12V

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

MVME 712A/AM/-12/-13 PORT 4 (DTE)

712A/AM/-12/-13
TRANSITION MODULE

PORT 4

DSR

1.5KJ14
DCE DTE

NOTES:

1. SERIAL PORT 4 IS HARD-WIRED DTE. USE NULL MODEM CABLE FOR DCE.

FRONT PANEL

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

D

R

R

R

Z85230

B PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC3

J12

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME 162 EIA-232 DTE CONFIGURATION
 (TO MODEM)

11020.00 9406 (3-4)

+5V1

4

2

P2-A32

P2-A28

TXC

RXC

RTXC4

TRXC4

NC

R

NC

NC

PIN 3

PIN 2

PIN 7

PIN 8

PIN 4

PIN 1

PIN 6

DB9

SIM05
EIA-232-D DTE

2. TO ATTACH TERMINAL, CONNECT J14 TO "DCE" FOR DSR SIGNAL.

Installation Instructions

2-31

2

Figure 2-5. MVME162FX EIA-232-D Connections, MVME712A/AM/-12/-13
(Sheet 4 of 4)

+12V

TXD

RXD

RTS

CTS

DTR

DCD

1.5K

MVME 712A/AM/-12/-13 PORT 4 (DTE)

712A/AM/-12/-13
TRANSITION MODULE

PORT 4

DSR

1.5KJ14
DCE DTE

NOTES:

1. SERIAL PORT 4 IS HARD-WIRED DTE. USE NULL MODEM CABLE FOR DCE.

NC

NC

PIN 3

PIN 2

PIN 7

PIN 8

PIN 4

PIN 1

PIN 6

DB9

FRONT PANEL

P2-A25

P2-A26

P2-A27

P2-A29

P2-A30

P2-A31

TXD4

RXD4

RTS4

CTS4

DTR4

DCD4

PORT 2
D

R

D

D

D

D

D

R

R

R

Z85230

B PORT

TXD

RXD

RTS

CTS

DTR

DCD

TXC

RXC

TXD

RXD

RTS

CTS

DTR

DCD

DSR

TXC3

J12

RXC

TXCO

PIN 2

PIN 3

PIN 4

PIN 5

PIN 20

PIN 8

PIN 6

PIN 15

PIN 17

PIN 24

PIN 7

DB25

P2 CABLE

TXD

RXD

RTS

CTS

DTR

DCD

MVME 162 EIA-232 DCE CONFIGURATION
 (TO TERMINAL)

11020.00 9406 (4-4)

+5V

1

4

2

P2-A32

P2-A28

TXC

RXC

RTXC4

TRXC4

SIM06
EIA-232-D DCE

2. TO ATTACH TERMINAL, CONNECT J14 TO "DCE" FOR DSR SIGNAL.

2-32

Hardware Preparation

2

Figure 2-6. MVME162FX EIA-485/EIA-422 Connections

1566 9501

TXD_B

TXD_A

RXD_B

RXD_A

TXC_B

TXC_A

RXC_B

RXC_A

TXD_B

TXD_A

RXD_B

RXD_A

TXC_B

TXC_A

RXC_B

RXC_A

P2 CONNECTOR

D

P2-C18

P2-A25

P2-A19

P2-A26

P2-C24

P2-A32

P2-C21

P2-A28

R

D

R

D

R

D

R

Z85230

B PORT

TXD

RXD

DTR

RXC

TXC

RTS

FO2 CONTROLLER

REFER TO INSTALLATION MANUAL

PIN 14

PIN 2

PIN 16

PIN 3

PIN 12

PIN 15

PIN 9

PIN 17

FRONT PANEL
DB-25

1

2
J2

3

4
J2

SIMM09

.. .

DRIVER/RECEIVER

PORT
2

EIA-485/EIA-422

3

3-1

3Debugger General Information

Overview of M68000 Firmware
The firmware for the M68000-based (68K) series of board and
system level products has a common genealogy, deriving from the
debugger firmware currently used on all Motorola M68000-based
CPU modules. The M68000 firmware family provides a high degree
of functionality and user friendliness, and yet stresses portability
and ease of maintenance. The M68000 firmware implementation on
the MVME162FX MC68040-based or MC68LC040-based Embedded
Controller is known as the MVME162Bug, or 162Bug. It includes
diagnostics for testing and configuring IndustryPack modules.

Description of 162Bug
The 162Bug package, MVME162Bug, is a powerful evaluation and
debugging tool for systems built around the MVME162FX CISC-
based microcomputers. Facilities are available for loading and
executing user programs under complete operator control for
system evaluation. 162Bug includes commands for display and
modification of memory, breakpoint and tracing capabilities, a
powerful assembler/disassembler useful for patching programs,
and a power-up self test which verifies the integrity of the system.
Various 162Bug routines that handle I/O, data conversion, and
string functions are available to user programs through the TRAP
#15 system calls.

162Bug consists of three parts:

❏ A command-driven user-interactive software debugger,
described in Chapter 4 and hereafter referred to as "the
debugger" or "162Bug".

3-2

Debugger General Information

3

❏ A command-driven diagnostic package for the MVME162FX
hardware, described in the MVME162Bug Diagnostics
Manual, and hereafter referred to as "the diagnostics".

❏ A user interface which accepts commands from the system
console terminal.

When using 162Bug, you operate out of either the debugger
directory or the diagnostic directory. If you are in the debugger
directory, the debugger prompt "162-Bug> " is displayed and you
have all of the debugger commands at your disposal. If you are in
the diagnostic directory, the diagnostic prompt
"162-Diag> " is displayed and you have all of the diagnostic
commands at your disposal as well as all of the debugger
commands. You may switch between directories by using the
Switch Directories (SD) command, or may examine the commands
in the particular directory that you are currently in by using the
Help (HE) command.

Because 162Bug is command-driven, it performs its various
operations in response to user commands entered at the keyboard.
When you enter a command, 162Bug executes the command and
the prompt reappears. However, if you enter a command that
causes execution of user target code (e.g., "GO"), then control may
or may not return to 162Bug, depending on the outcome of the user
program.

If you have used one or more of Motorola's other debugging
packages, you will find the CISC 162Bug very similar. Some effort
has also been made to make the interactive commands more
consistent. For example, delimiters between commands and
arguments may now be commas or spaces interchangeably.

162Bug Implementation

3-3

3

162Bug Implementation
MVME162Bug is written largely in the "C" programming language,
providing benefits of portability and maintainability. Where
necessary, assembler has been used in the form of separately
compiled modules containing only assembler code — no mixed
language modules are used.

Physically, 162Bug is contained in the 28F008SA Flash memory,
providing 512KB (128K longwords) of storage. Optionally, the
162Bug can be loaded and executed in a single 27C040 PROM.
(128K longwords) of storage. Both memory devices are necessary
regardless of how much space is actually occupied by the firmware,
because of the 32-bit longword-oriented MC68040 memory bus
architecture. The executable code is checksummed at every power-
on or reset firmware entry, and the result (which includes a pre-
calculated checksum contained in the memory devices), is tested for
an expected zero. Thus, users are cautioned against modification of
the memory devices unless re-checksum precautions are taken.

Note MVME162FX models ordered without the VMEbus
interface are shipped with Flash memory blank (the
factory uses the VMEbus to program the Flash memory
with debugger code). To use the 162Bug package, be
sure that jumper header J22 is configured to select the
EPROM memory map.

If you subsequently wish to run the debugger from
Flash memory, you must first initialize Flash memory
with the PFLASH command, then reconfigure J22.
Refer to Step 5 below for further details.

3-4

Debugger General Information

3

Installation and Startup
Follow the steps below to operate 162Bug with the MVME162FX
module. 162Bug is factory-installed in the Flash memory of the
MVME162FX, except in the no-VMEbus case.

!
Caution

Inserting or removing modules while power is applied
could damage module components.

1. Turn all equipment power OFF. Refer to the Hardware
Preparation section in Chapter 2 and install/remove jumpers
on headers as required for your particular application.

Jumpers on header J22 affect 162Bug operation as listed
below. The default condition is with all eight jumpers
installed, between pins 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, and
15-16. (Models with no VMEbus interface have no jumper
between pins 9-10.)

These readable jumpers can be read as a register (at
$FFF4202D) on the Memory Controller (MC2 chip) ASIC. The
bit values are read as a one when the jumper is off, and as a
zero when the jumper is on. This jumper block (header J22)
contains eight bits. Refer also to the MVME162FX Embedded
Controller Programmer's Reference Guide for more information
on the MC2 chip.

The MVME162Bug reserves/defines the four lower order bits
(GPI3 to GPI0). The following is the description for the bits
reserved/defined by the debugger:

Bit J22 Pins Description

Bit #0 (GPI0) 15-16 When set to 1 (high), instructs the
debugger to use local Static RAM for its
work page (i.e., variables, stack, vector
tables, etc.).

Installation and Startup

3-5

3

Note that when the MVME162FX comes up in a cold reset, 162Bug
runs in Board Mode. Using the Environment (ENV) or MENU com-
mands can make 162Bug run in System Mode. Refer to Chapter 5
for details.

2. Configure header J1 by installing/removing a jumper
between pins 1 and 2. A jumper installed/removed
enables/disables the system controller function of the
MVME162FX.

Bit #1 (GPI1) 13-14 When set to 1 (high), instructs the
debugger to use the default
setup/operation parameters in Flash or
PROM versus the user setup/operation
parameters in NVRAM. This is the same
as depressing the RESET and ABORT
switches at the same time. This feature
can be used in the event the user setup is
corrupted or does not meet a sanity
check. Refer to the ENV command
(Chapter 5) for the Flash/PROM
defaults.

Bit #2 (GPI2) 11-12 Reserved for future use.
Bit #3 (GPI3) 9-10 When set to 0 (low), informs the

debugger that it is executing out of the
Flash memory. When set to 1 (high), as
set in no-VMEbus models, informs the
debugger that it is executing out of the
PROM.

Bit #4 (GPI4) 7-8 Open to your application.
Bit #5 (GPI5) 5-6 Open to your application.
Bit #6 (GPI6) 3-4 Open to your application.
Bit #7 (GPI7) 1-2 Open to your application.

Bit J22 Pins Description

3-6

Debugger General Information

3

3. You may configure Port B of the Z85230 serial com-
munications controller via a serial interface module (SIMM)
which is installed at connector J10 on the MVME162FX board.
Five serial interface modules are available:

– EIA-232-D DTE (SIMM05)

– EIA-232-D DCE (SIMM06)

– EIA-530 DTE (SIMM07)

– EIA-530 DCE (SIMM08)

– EIA-485, or EIA-422 DTE or DCE (all with SIMM09)

For information on removing and/or installing a SIMM, refer
to Chapter 2.

4. Jumpers on headers J11 and J12 configure serial ports 1 and 2
to drive or receive clock signals provided by the TXC and
RXC signal lines. The factory configures the module for
asynchronous communication, that is, installs no jumpers.
Refer to Chapter 2 if your application requires configuring
ports 1 and 2 for synchronous communication.

5. If using a PROM version of the 162Bug (e.g., in no-VMEbus,
blank-Flash versions of the MVME162FX), install the PROM
device in socket U47. Be sure that the physical chip
orientation is correct — that is, with the flattened corner of the
PROM aligned with the corresponding portion of the PROM
socket on the MVME162FX module.

Check the jumper installation on header J21 for correct size.
Connect pins 1 and 2 on J21 for 27C080 devices, or pins 2 and
3 for 27C040 devices. The factory default is 2 and 3.

Remove the jumper on J22 pins 9 and 10.

3Debugger General Information

Installation and Startup

3-7

3

Note If you wish to execute the debugger out of Flash
memory rather than from PROM in subsequent
sessions, it will be necessary to initialize the Flash
memory after power-up as described in Step 20.

6. The jumper on header J24 configures the IP bus clock for
either 8MHz (on both MVME162-4xx and -5xx boards) or
32MHz (on MVME162-5xx boards only). The factory
configuration puts a jumper between J24 pins 1 and 2 for an
8MHz clock. Verify that this setting is appropriate for your
application.

7. The jumper on header J25 enables/disables the IP bus strobe
function on the MVME162FX. The factory configuration puts
a jumper between J25 pins 1 and 2 to connect the Strobe∗
signal to the IP2 chip. Verify that the strobe line should be
connected in your application.

8. Header J26 defines the state of the snoop control bus when an
IP DMA controller is local bus master. The factory
configuration has both jumpers in place for snoop inhibition.
Verify that this setting is appropriate for your application.

9. Refer to the setup procedure for your particular chassis or
system for details concerning the MVME162FX installation.

10. Connect the terminal that is to be used as the 162Bug system
console to the default debug EIA-232-D port at serial port 1 on
the front panel of the MVME162FX module. Refer to Chapter
2 for other connection options. Set up the terminal as follows:

– eight bits per character

– one stop bit per character

– parity disabled (no parity)

– baud rate 9600 baud (default baud rate of MVME162FX
ports at power-up)

After power-up, you can reconfigure the baud rate of the
debug port if necessary by using the Port Format (PF)
command of the 162Bug debugger.

3-8

Debugger General Information

3

Note In order for high-baud rate serial communication
between 162Bug and the terminal to work, the terminal
must do some form of handshaking. If the terminal
being used does not do hardware handshaking via the
CTS line, then it must do XON/XOFF handshaking. If
you get garbled messages and missing characters, then
you should check the terminal to make sure
XON/XOFF handshaking is enabled.

11. If you want to connect devices (such as a host computer
system and/or a serial printer) to the other EIA-232-D port
connectors (marked SERIAL PORTS 2, 3, and 4 on the
MVME712x transition module), connect the appropriate
cables and configure the port(s) as detailed in Step 3 above.
After power-up, you can reconfigure the port(s) by program-
ming the MVME162FX Z85230 Serial Communications
Controller (SCC), or by using the 162Bug PF command.

12. Power up the system. 162Bug executes some self-checks and
displays the debugger prompt "162-Bug> " (if in Board Mode).
However, if the ENV command (Chapter 5) has put 162Bug
in System Mode, the system performs a selftest and tries to
autoboot. Refer to the ENV and MENU commands. They are
listed in Table 4-3.

If the confidence test fails, the test is aborted when the first
fault is encountered. If possible, an appropriate message is
displayed, and control then returns to the menu.

13. Before using the MVME162FX after the initial installation, set
the date and time using the following command line
structure:

162-Bug> SET [mmddyyhhmm]|[<+/-CAL>;C]

For example, the following command line starts the real-time
clock and sets the date and time to 10:37 AM, July 7, 1996:

162-Bug> SET 0707961037

The board’s self-tests and operating systems require that the
real-time clock be running.

Autoboot

3-9

3Note If you are using a PROM version of the 162Bug (e.g., in
no-VMEbus, blank-Flash versions of the MVME162FX)
and you wish to execute the debugger out of Flash
memory rather than from PROM in subsequent
sessions, make sure that 162Bug is in Board Mode and
copy the PROM contents to Flash memory with the
PFLASH command as follows:

162-Bug> PFLASH FF800000:80000 FFA00000

Then reinstall the jumper at J22 pins 9 and 10. (162Bug
always executes from memory location FF800000; the
state of J22 determines whether that location is in
PROM or Flash.)

Autoboot
Autoboot is a software routine that is contained in the 162Bug
Flash/PROM to provide an independent mechanism for booting an
operating system. This autoboot routine automatically scans for
controllers and devices in a specified sequence until a valid
bootable device containing a boot media is found or the list is
exhausted. If a valid bootable device is found, a boot from that
device is started. The controller scanning sequence goes from the
lowest controller Logical Unit Number (LUN) detected to the
highest LUN detected. Controllers, devices, and their LUNs are
listed in Appendix B.

At power-up, Autoboot is enabled, and providing the drive and
controller numbers encountered are valid, the following message is
displayed upon the system console:

Autoboot in progress... To abort hit <BREAK>

3-10

Debugger General Information

3

Following this message there is a delay to allow you an opportunity
to abort the Autoboot process if you wish. Then the actual I/O is
begun: the program pointed to within the volume ID of the media
specified is loaded into RAM and control passed to it. If, however,
during this time you want to gain control without Autoboot, you
can press the <BREAK> key or the software ABORT or RESET
switches.

Autoboot is controlled by parameters contained in the ENV
command. These parameters allow the selection of specific boot
devices and files, and allow programming of the Boot delay. Refer
to the ENV command in Chapter 5 for more details.

!
Caution

Although streaming tape can be used to autoboot, the
same power supply must be connected to the streaming
tape drive, controller, and the MVME162FX. At power-
up, the tape controller will position the streaming tape
to load point where the volume ID can correctly be read
and used.

If, however, the MVME162FX loses power but the
controller does not, and the tape happens to be at load
point, the sequences of commands required (attach and
rewind) cannot be given to the controller and autoboot
will not be successful.

ROMboot
As shipped from the factory, 162Bug occupies the first half of the
Flash memory. This leaves the second half of the Flash memory and
the PROM socket (U47) available for your use. The 162Bug is also
available in PROM if your application requires all of the Flash
memory. Contact your Motorola sales office for assistance. This
function is configured/enabled by the Environment (ENV)
command (refer to Chapter 5) and executed at power-up
(optionally also at reset) or by the RB command assuming there is
valid code in the memory devices (or optionally elsewhere on the

Network Boot

3-11

3

module or VMEbus) to support it. If ROMboot code is installed, a
user-written routine is given control (if the routine meets the format
requirements). One use of ROMboot might be resetting SYSFAIL*
on an unintelligent controller module. The NORB command
disables the function.

For a user's ROMboot module to gain control through the ROMboot
linkage, four requirements must be met:

❏ Power must have just been applied (but the ENV command
can change this to also respond to any reset).

❏ Your routine must be located within the MVME162FX
Flash/PROM memory map (but the ENV command can
change this to any other portion of the onboard memory, or
even offboard VMEbus memory).

❏ The ASCII string "BOOT" must be located within the
specified memory range.

❏ Your routine must pass a checksum test, which ensures that
this routine was really intended to receive control at
powerup.

For complete details on how to use ROMboot, refer to the Debugging
Package for Motorola 68K CISC CPUs User's Manual.

Network Boot
Network Auto Boot is a software routine contained in the 162Bug
Flash/PROM that provides a mechanism for booting an operating
system using a network (local Ethernet interface) as the boot device.
The Network Auto Boot routine automatically scans for controllers
and devices in a specified sequence until a valid bootable device
containing a boot media is found or the list is exhausted. If a valid
bootable device is found, a boot from that device is started. The
controller scanning sequence goes from the lowest controller
Logical Unit Number (LUN) detected to the highest LUN detected.
(Refer to Appendix C for default LUNs.)

3-12

Debugger General Information

3

At power-up, Network Boot is enabled, and providing the drive
and controller numbers encountered are valid, the following
message is displayed upon the system console:

"Network Boot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you to abort the
Auto Boot process if you wish. Then the actual I/O is begun: the
program pointed to within the volume ID of the media specified is
loaded into RAM and control passed to it. If, however, during this
time you want to gain control without Network Boot, you can press
the <BREAK> key or the software ABORT or RESET switches.

Network Auto Boot is controlled by parameters contained in the
NIOT and ENV commands. These parameters allow the selection
of specific boot devices, systems, and files, and allow programming
of the Boot delay. Refer to the ENV command in Chapter 5 for more
details.

Restarting the System
You can initialize the system to a known state in three different
ways: reset, abort, and break. Each has characteristics which make
it more appropriate than the others in certain situations.

The debugger has a special feature upon a reset condition. This
feature is activated by depressing the RESET and ABORT switches at
the same time. This feature instructs the debugger to use the default
setup/operation parameters in ROM versus your setup/operation
parameters in NVRAM. This feature can be used in the event your
setup/operation parameters are corrupted or do not meet a sanity
check. Refer to the ENV command (Chapter 5) for the ROM
defaults.

Reset

Pressing and quickly releasing the MVME162FX front panel RESET
button initiates a system reset. COLD and WARM reset modes are
available. By default, 162Bug is in COLD mode. During COLD

Restarting the System

3-13

3

reset, a total system initialization takes place, as if the MVME162FX
had just been powered up. All static variables (including disk
device and controller parameters) are restored to their default
states. The breakpoint table and offset registers are cleared. The
target registers are invalidated. Input and output character queues
are cleared. Onboard devices (timer, serial ports, etc.) are reset, and
the two serial ports are reconfigured to their default state.

During WARM reset, the 162Bug variables and tables are
preserved, as well as the target state registers and breakpoints.

Reset must be used if the processor ever halts, or if the 162Bug
environment is ever lost (vector table is destroyed, stack corrupted,
etc.).

Note Take care to release the RESET button quickly, to avoid
altering the DRAM contents. Holding the botton down
may inhibit the DRAM refresh and cause memory loss
on some boards.

Abort

Abort is invoked by pressing and releasing the ABORT switch on the
MVME162FX front panel. Whenever abort is invoked when
executing a user program (running target code), a "snapshot" of the
processor state is captured and stored in the target registers. For
this reason, abort is most appropriate when terminating a user
program that is being debugged. Abort should be used to regain
control if the program gets caught in a loop, etc. The target PC,
register contents, etc., help to pinpoint the malfunction.

Pressing and releasing the ABORT switch generates a local board
condition which may interrupt the processor if enabled. The target
registers, reflecting the machine state at the time the ABORT switch
was pressed, are displayed on the screen. Any breakpoints installed
in your code are removed and the breakpoint table remains intact.
Control is returned to the debugger.

3-14

Debugger General Information

3

Break

A "Break" is generated by pressing and releasing the BREAK key on
the terminal keyboard. Break does not generate an interrupt. The
only time break is recognized is when characters are sent or
received by the console port. Break removes any breakpoints in
your code and keeps the breakpoint table intact. Break also takes a
snapshot of the machine state if the function was entered using
SYSCALL. This machine state is then accessible to you for
diagnostic purposes.

Many times it may be desirable to terminate a debugger command
prior to its completion; for example, during the display of a large
block of memory. Break allows you to terminate the command.

SYSFAIL* Assertion/Negation

Upon a reset/powerup condition the debugger asserts the VMEbus
SYSFAIL* line (refer to the VMEbus specification). SYSFAIL* stays
asserted if any of the following has occurred:

❏ confidence test failure

❏ NVRAM checksum error

❏ NVRAM low battery condition

❏ local memory configuration status

❏ self test (if system mode) has completed with error

❏ MPU clock speed calculation failure

After debugger initialization is done and none of the above
situations have occurred, the SYSFAIL* line is negated. This
indicates to the user or VMEbus masters the state of the debugger.
In a multi-computer configuration, other VMEbus masters could
view the pertinent control and status registers to determine which
CPU is asserting SYSFAIL*. SYSFAIL* assertion/negation is also
affected by the ENV command. Refer to Chapter 5.

Memory Requirements

3-15

3

MPU Clock Speed Calculation

The clock speed of the microprocessor is calculated and checked
against a user definable parameter housed in NVRAM (refer to the
CNFG command in Chapter 5). If the check fails, a warning
message is displayed. The calculated clock speed is also checked
against known clock speeds and tolerances.

Memory Requirements
The program portion of 162Bug is approximately 512KB of code,
consisting of download, debugger, and diagnostic packages and
contained entirely in Flash or PROM.

The 162Bug executes from $FF800000 whether in Flash or PROM.
With the jumper at J22 pins 9-10 installed (the factory ship
configuration except in the no-VMEbus case), the Flash memory
appears at address $FF800000 and is the part executed during reset.
The PROM socket is mapped to address $FFA00000 with this
configuration. If you remove the jumper at J22 pins 9 and 10, the
address spaces of the Flash and PROM are swapped.

The 162Bug initial stack completely changes all 8KB of memory at
addresses $FFE0C000 through $FFE0DFFF at power-up or reset.

DRAM is neither ECC nor parity type, but unprotected.

The 162Bug requires 2KB of NVRAM for storage of board
configuration, communication, and booting parameters. This
storage area begins at $FFFC16F8 and ends at $FFFC1EF7.

162Bug requires a minimum of 64KB of contiguous read/write
memory to operate. The ENV command controls where this block
of memory is located. Regardless of where the onboard RAM is

Type of Memory Present Default DRAM
Base Address

Default SRAM
Base Address

Single DRAM mezzanine $00000000 $FFE00000
(onboard SRAM)

3-16

Debugger General Information

3

located, the first 64KB is used for 162Bug stack and static variable
space and the rest is reserved as user space. Whenever the
MVME162FX is reset, the target PC is initialized to the address cor-
responding to the beginning of the user space, and the target stack
pointers are initialized to addresses within the user space, with the
target Interrupt Stack Pointer (ISP) set to the top of the user space.

Terminal Input/Output Control
When entering a command at the prompt, the following control
codes may be entered for limited command line editing.

Note The presence of the caret (^) before a character
indicates that the Control (CTRL) key must be held
down while striking the character key.

^X (cancel line) The cursor is backspaced to the beginning of the
line. If the terminal port is configured with the
hardcopy or TTY option (refer to PF command),
then a carriage return and line feed is issued
along with another prompt.

^H (backspace) The cursor is moved back one position. The
character at the new cursor position is erased. If
the hardcopy option is selected, a "/" character
is typed along with the deleted character.

 (delete or
rubout)

Performs the same function as ^H.

^D (redisplay) The entire command line as entered so far is
redisplayed on the following line.

^A (repeat) Repeats the previous line. This happens only at
the command line. The last line entered is
redisplayed but not executed. The cursor is
positioned at the end of the line. You may enter
the line as is or you can add more characters to
it. You can edit the line by backspacing and
typing over old characters.

Disk I/O Support

3-17

3

When observing output from any 162Bug command, the XON and
XOFF characters which are in effect for the terminal port may be
entered to control the output, if the XON/XOFF protocol is enabled
(default). These characters are initialized to ^S and ^Q respectively
by 162Bug, but you may change them with the PF command. In the
initialized (default) mode, operation is as follows:

Disk I/O Support
162Bug can initiate disk input/output by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 162Bug consist of command-level disk
operations, disk I/O system calls (only via one of the TRAP #15
instructions) for use by user programs, and defined data structures
for disk parameters.

Parameters such as the address where the module is mapped and
the type and number of devices attached to the controller module
are kept in tables by 162Bug. Default values for these parameters
are assigned at power-up and cold-start reset, but may be altered as
described in the section on default parameters, later in this chapter.

Appendix B contains a list of the controllers presently supported, as
well as a list of the default configurations for each controller.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A
disk is viewed by 162Bug as a storage area divided into logical
blocks. By default, the logical block size is set to 256 bytes for every
block device in the system. The block size can be changed on a per
device basis with the IOT command.

^S (wait) Console output is halted.
^Q (resume) Console output is resumed.

3-18

Debugger General Information

3

The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size varies for different
controllers, and the value for a specific device can be displayed and
changed with the IOT command.

When a disk transfer is requested, the start and size of the transfer
is specified in blocks. 162Bug translates this into an equivalent
sector specification, which is then passed on to the controller to
initiate the transfer. If the conversion from blocks to sectors yields a
fractional sector count, an error is returned and no data is
transferred.

Device Probe Function

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed; i.e., when system calls
.DSKRD, .DSKWR, .DSKCFIG, .DSKFMT, and .DSKCTRL, and
debugger commands BH, BO, IOC, IOP, IOT, MAR, and MAW are
used.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).

Disk I/O via 162Bug Commands

These following 162Bug commands are provided for disk I/O.
Detailed instructions for their use are found in the Debugging
Package for Motorola 68K CISC CPUs User's Manual. When a
command is issued to a particular controller LUN and device LUN,
these LUNs are remembered by 162Bug so that the next disk
command defaults to use the same controller and device.

Disk I/O Support

3-19

3

IOI (Input/Output Inquiry)

This command is used to probe the system for all possible
CLUN/DLUN combinations and display inquiry data for devices
which support it. The device descriptor table only has space for 16
device descriptors; with the IOI command, you can view the table
and clear it if necessary.

IOP (Physical I/O to Disk)

IOP allows you to read or write blocks of data, or to format the
specified device in a certain way. IOP creates a command packet
from the arguments you have specified, and then invokes the
proper system call function to carry out the operation.

IOT (I/O Teach)

IOT allows you to change any configurable parameters and
attributes of the device. In addition, it allows you to see the
controllers available in the system.

IOC (I/O Control)

IOC allows you to send command packets as defined by the
particular controller directly. IOC can also be used to look at the
resultant device packet after using the IOP command.

BO (Bootstrap Operating System)

BO reads an operating system or control program from the
specified device into memory, and then transfers control to it.

BH (Bootstrap and Halt)

BH reads an operating system or control program from a specified
device into memory, and then returns control to 162Bug. It is used
as a debugging tool.

3-20

Debugger General Information

3

Disk I/O via 162Bug System Calls

All operations that actually access the disk are done directly or
indirectly by 162Bug TRAP #15 system calls. (The command-level
disk operations provide a convenient way of using these system
calls without writing and executing a program.)

The following system calls are provided to allow user programs to
do disk I/O:

Refer to the Debugging Package for Motorola 68K CISC CPUs User's
Manual for information on using these and other system calls.

To perform a disk operation, 162Bug must eventually present a
particular disk controller module with a controller command
packet which has been especially prepared for that type of
controller module. (This is accomplished in the respective
controller driver module.) A command packet for one type of
controller module usually does not have the same format as a
command packet for a different type of module. The system call
facilities which do disk I/O accept a generalized (controller-
independent) packet format as an argument, and translate it into a
controller-specific packet, which is then sent to the specified device.
Refer to the system call descriptions in the Debugging Package for
Motorola 68K CISC CPUs User's Manual for details on the format and
construction of these standardized "user" packets.

.DSKRD Disk read. System call to read blocks from a disk into
memory.

.DSKWR Disk write. System call to write blocks from memory onto
a disk.

.DSKCFIG Disk configure. This function allows you to change the
configuration of the specified device.

.DSKFMT Disk format. This function allows you to send a format
command to the specified device.

.DSKCTR
L

Disk control. This function is used to implement any
special device control functions that cannot be
accommodated easily with any of the other disk functions.

Disk I/O Support

3-21

3

The packets which a controller module expects to be given vary
from controller to controller. The disk driver module for the
particular hardware module (board) must take the standardized
packet given to a trap function and create a new packet which is
specifically tailored for the disk drive controller it is sent to. Refer
to documentation on the particular controller module for the
format of its packets, and for using the IOC command.

Default 162Bug Controller and Device Parameters

162Bug initializes the parameter tables for a default configuration
of controllers and devices (refer to Appendix B). If the system needs
to be configured differently than this default configuration (for
example, to use a 70MB Winchester drive where the default is a
40MB Winchester drive), then these tables must be changed.

There are three ways to change the parameter tables:

❏ Using BO or BH. When you invoke one of these commands,
the configuration area of the disk is read and the parameters
corresponding to that device are rewritten according to the
parameter information contained in the configuration area.
This is a temporary change. If a cold-start reset occurs, then
the default parameter information is written back into the
tables.

❏ Using the IOT. You can use this command to reconfigure the
parameter table manually for any controller and/or device
that is different from the default. This is also a temporary
change and is overwritten if a cold-start reset occurs.

❏ Obtain the source. You can then change the configuration
files and rebuild 162Bug so that it has different defaults.
Changes made to the defaults are permanent until changed
again.

3-22

Debugger General Information

3

Disk I/O Error Codes

162Bug returns an error code if an attempted disk operation is
unsuccessful.

Network I/O Support
The Network Boot Firmware provides the capability to boot the
CPU through the Flash/PROM debugger using a network (local
Ethernet interface) as the boot device.

The booting process is executed in two distinct phases.

❏ The first phase allows the diskless remote node to discover its
network identify and the name of the file to be booted.

❏ The second phase has the diskless remote node reading the
boot file across the network into its memory.

The various modules (capabilities) and the dependencies of these
modules that support the overall network boot function are
described in the following paragraphs.

Intel 82596 LAN Coprocessor Ethernet Driver

This driver manages/surrounds the Intel 82596 LAN Coprocessor.
Management is in the scope of the reception of packets, the
transmission of packets, receive buffer flushing, and interface
initialization.

This module ensures that the packaging and unpackaging of
Ethernet packets is done correctly in the Boot PROM.

UDP/IP Protocol Modules

The Internet Protocol (IP) is designed for use in interconnected
systems of packet-switched computer communication networks.
The Internet protocol provides for transmitting of blocks of data

Network I/O Support

3-23

3

called datagrams (hence User Datagram Protocol, or UDP) from
sources to destinations, where sources and destinations are hosts
identified by fixed length addresses.

The UDP/IP protocols are necessary for the TFTP and BOOTP
protocols; TFTP and BOOTP require a UDP/IP connection.

RARP/ARP Protocol Modules

The Reverse Address Resolution Protocol (RARP) basically consists
of an identity-less node broadcasting a "whoami" packet onto the
Ethernet, and waiting for an answer. The RARP server fills an
Ethernet reply packet up with the target's Internet Address and
sends it.

The Address Resolution Protocol (ARP) basically provides a
method of converting protocol addresses (e.g., IP addresses) to local
area network addresses (e.g., Ethernet addresses). The RARP
protocol module supports systems which do not support the
BOOTP protocol (next paragraph).

BOOTP Protocol Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client
machine to discover its own IP address, the address of a server host,
and the name of a file to be loaded into memory and executed.

TFTP Protocol Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to
transfer files. It is implemented on top of the Internet User
Datagram Protocol (UDP or Datagram) so it may be used to move
files between machines on different networks implementing UDP.
The only thing it can do is read and write files from/to a remote
server.

3-24

Debugger General Information

3

Network Boot Control Module

The "control" capability of the Network Boot Control Module is
needed to tie together all the necessary modules (capabilities) and
to sequence the booting process. The booting sequence consists of
two phases: the first phase is labeled "address determination and
bootfile selection" and the second phase is labeled "file transfer".
The first phase will utilize the RARP/BOOTP capability and the
second phase will utilize the TFTP capability.

Network I/O Error Codes

162Bug returns an error code if an attempted network operation is
unsuccessful.

Multiprocessor Support
The MVME162FX dual-port RAM feature makes the shared RAM
available to remote processors as well as to the local processor. This
can be done by either of the following two methods. Either method
can be enabled/disabled by the ENV command as its Remote Start
Switch Method (refer to Chapter 5).

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution in the local
MVME162FX dual-port RAM by issuing a remote GO command
using the Multiprocessor Control Register (MPCR). The MPCR,
located at shared RAM location of $800 offset from the base address
the debugger loads it at, contains one of two longwords used to
control communication between processors. The MPCR contents
are organized as follows:

$800 * N/A N/A N/A (MPCR)

Multiprocessor Support

3-25

3

The status codes stored in the MPCR are of two types:

❏ Status returned (from the monitor)

❏ Status set (by the bus master)

The status codes that may be returned from the monitor are:

You can only program Flash memory by the MPCR method. Refer
to the .PFLASH system call in the Debugging Package for Motorola
68K CISC CPUs User's Manual for a description of the Flash memory
program control packet structure. The status codes that may be set
by the bus master are:

The Multiprocessor Address Register (MPAR), located in shared
RAM location of $804 offset from the base address the debugger
loads it at, contains the second of two longwords used to control
communication between processors. The MPAR contents specify
the address at which execution for the remote processor is to begin
if the MPCR contains a G or B. The MPAR is organized as follows:

At power-up, the debug monitor self-test routines initialize RAM,
including the memory locations used for multi-processor support
($800 through $807).

The MPCR contains $00 at power-up, indicating that initialization
is not yet complete. As the initialization proceeds, the execution
path comes to the "prompt" routine. Before sending the prompt, this
routine places an R in the MPCR to indicate that initialization is
complete. Then the prompt is sent.

HEX 0 (HEX 00) -- Wait. Initialization not yet complete.
ASCII E (HEX 45) -- Code pointed to by the MPAR address is executing.
ASCII P (HEX 50) -- Program Flash Memory. The MPAR is set to the

address of the Flash memory program control packet.
ASCII R (HEX 52) -- Ready. The firmware monitor is watching for a change.

ASCII G (HEX 47) -- Use Go Direct (GD) logic specifying the MPAR address.
ASCII B (HEX 42) -- Install breakpoints using the Go (G) logic.

$804 * * * * (MPAR)

3-26

Debugger General Information

3

If no terminal is connected to the port, the MPCR is still polled to
see whether an external processor requires control to be passed to
the dual-port RAM. If a terminal does respond, the MPCR is polled
for the same purpose while the serial port is being polled for user
input.

An ASCII G placed in the MPCR by a remote processor indicates
that the Go Direct type of transfer is requested. An ASCII B in the
MPCR indicates that breakpoints are to be armed before control is
transferred (as with the GO command).

In either sequence, an E is placed in the MPCR to indicate that
execution is underway just before control is passed to RAM. (Any
remote processor could examine the MPCR contents.)

If the code being executed in dual-port RAM is to reenter the debug
monitor, a TRAP #15 call using function $0063 (SYSCALL
.RETURN) returns control to the monitor with a new display
prompt. Note that every time the debug monitor returns to the
prompt, an R is moved into the MPCR to indicate that control can
be transferred once again to a specified RAM location.

GCSR Method

A remote processor can initiate program execution in the local
MVME162FX dual-port RAM by issuing a remote GO command
using the VMEchip2 Global Control and Status Registers (GCSR).
The remote processor places the MVME162FX execution address in
general purpose registers 0 and 1 (GPCSR0 and GPCSR1). The
remote processor then sets bit 8 (SIG0) of the VMEchip2 LM/SIG
register. This causes the MVME162FX to install breakpoints and
begin execution. The result is identical to the MPCR method (with
status code B) described in the previous section.

The GCSR registers are accessed in the VMEbus short I/O space.
Each general purpose register is two bytes wide, occurring at an
even address. The general purpose register number 0 is at an offset
of $8 (local bus) or $4 (VMEbus) from the start of the GCSR
registers. The local bus base address for the GCSR is $FFF40100. The
VMEbus base address for the GCSR depends on the group select

Diagnostic Facilities

3-27

3

value and the board select value programmed in the Local Control
and Status Registers (LCSR) of the MVME162FX. The execution
address is formed by reading the GCSR general purpose registers
in the following manner:

The address appears as:

Diagnostic Facilities
The 162Bug package includes a set of hardware diagnostics for
testing and troubleshooting the MVME162FX. To use the
diagnostics, switch directories to the diagnostic directory. If you are
in the debugger directory, you can switch to the diagnostic
directory with the debugger command Switch Directories (SD).
The diagnostic prompt ("162-Diag> ") appears. Refer to the
MVME162Bug Diagnostics Manual for complete descriptions of the
diagnostic routines available and instructions on how to invoke
them. Note that some diagnostics depend on restart defaults that
are set up only in a particular restart mode. The documentation for
such diagnostics includes restart information.

Manufacturing Test Process
During the manufacturing process for MVME162FX modules, the
manufacturing test parameters and testing state flags are stored in
NVRAM. These strings are installed during the manufacturing
process and result in the product performing manufacturing tests.
None of these tests harm the product or system into which a
module is installed. Entering an ASCII break on the console port
from a terminal terminates these tests.

GPCSR0 used as the upper 16 bits of the address
GPCSR1 used as the lower 16 bits of the address

GPCSR0 GPCSR1

3-28

Debugger General Information

3

The two state flags that start the test processes are:

FLASH EMPTY$00122984

and

Burnin test$00000000

If either string is in the first location of NVRAM ($FFFC0000), the
test process starts.

This note is to inform users about the manufacturing test process; it
is not intended to instruct customers in its use. Motorola reserves
the right to delete, change, or modify this process.

4

4-1

4Using the 162Bug Debugger

Entering Debugger Command Lines
162Bug is command-driven and performs its various operations in
response to user commands entered at the keyboard. When the
debugger prompt (162-Bug>) appears on the terminal screen, then
the debugger is ready to accept commands.

As the command line is entered, it is stored in an internal buffer.
Execution begins only after the carriage return is entered, so that
you can correct entry errors, if necessary, using the control
characters described in Chapter 3.

When a command is entered, the debugger executes the command
and the prompt reappears. However, if the command entered
causes execution of user target code, for example GO, then control
may or may not return to the debugger, depending on what the
user program does. For example, if a breakpoint has been specified,
then control returns to the debugger when the breakpoint is
encountered during execution of the user program. Alternately, the
user program could return to the debugger by means of the TRAP
#15 function ".RETURN".

In general, a debugger command is made up of the following parts:

❏ The command identifier (i.e., MD or md for the Memory
Display command). Note that either upper- or lowercase is
allowed.

❏ A port number if the command is set up to work with more
than one port.

❏ At least one intervening space before the first argument.

❏ Any required arguments, as specified by command.

❏ An option field, set off by a semicolon (;) to specify conditions
other than the default conditions of the command.

4-2

Using the 162Bug Debugger

4

The commands are shown using a modified Backus-Naur form
syntax. The fsmetasymbols used are:

Syntactic Variables

The following syntactic variables are encountered in the command
descriptions which follow. In addition, other syntactic variables
may be used and are defined in the particular command description
in which they occur.

Expression as a Parameter

An expression can be one or more numeric values separated by the
arithmetic operators: plus (+), minus (-), multiplied by (*), divided
by (/), logical AND (&), shift left (<<), or shift right (>>).

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a "syntactic variable" and is to be
replaced by one of a class of items it represents.

| A vertical bar separating two or more items
indicates that a choice is to be made; only one of the
items separated by this symbol should be selected.

[] Square brackets enclose an item that is optional.
The item may appear zero or one time.

{ } Braces enclose an optional symbol that may occur
zero or more times.

DEL Delimiter; either a comma or a space.
EXP Expression (described in detail in a following section).
ADDR Address (described in detail in a following section).
COUNT Count; the syntax is the same as for EXP.
RANGE A range of memory addresses which may be specified

either by ADDR DEL ADDR or by ADDR : COUNT.
TEXT An ASCII string of up to 255 characters, delimited at

each end by the single quote mark (').

Entering Debugger Command Lines

4-3

4

Numeric values may be expressed in either hexadecimal, decimal,
octal, or binary by immediately preceding them with the proper
base identifier.

If no base identifier is specified, then the numeric value is assumed
to be hexadecimal.

A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

Evaluation of an expression is always from left to right unless
parentheses are used to group part of the expression. There is no
operator precedence. Subexpressions within parentheses are
evaluated first. Nested parenthetical subexpressions are evaluated
from the inside out.

Valid expression examples:

The total value of the expression must be between 0 and
$FFFFFFFF.

Data Type Base Identifier Examples

Integer Hexadecimal $ $FFFFFFFF

Integer Decimal & &1974, &10-&4

Integer Octal @ @456

Integer Binary % %1000110

String
Literal

Numeric Value
(In Hexadecimal)

'A' 41

'ABC' 414243

'TEST' 54455354

4-4

Using the 162Bug Debugger

4

Address as a Parameter

Many commands use ADDR as a parameter. The syntax accepted
by 162Bug is similar to the one accepted by the MC68040 one-line
assembler. All control addressing modes are allowed. An "address
+ offset register" mode is also provided.

Address Formats

Table 4-1 summarizes the address formats which are acceptable for
address parameters in debugger command lines.

Note In commands with RANGE specified as ADDR DEL
ADDR, and with size option W or L chosen, data at the
second (ending) address is acted on only if the second
address is a proper boundary for a word or longword,
respectively.

Expression Result (In Hex) Notes

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

%10011110+%1001 A7

88<<4 880 shift left

AA&F0 A0 logical
AND

Entering Debugger Command Lines

4-5

4

Table 4-1. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of
the specified offset register
(not an assembler-accepted
syntax).

(An) (A1) Address register indirect.
(also postincrement,
predecrement)

(d,An) or
d(An)

(120,A1)
120(A1)

Address register indirect with
displacement (two formats
accepted).

(d,An,Xn) or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with
index and displacement (two
formats accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.

([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.

For the memory indirect modes, fields can be omitted.
For example, three of many permutations are as follows:

([,An],od) ([,A1],4)

([bd]) ([FC1E])

([bd,,Xn]) ([8,,D2])

NOTES: N — Absolute address (any valid expression).

An — Address register n.

Xn — Index register n (An or Dn).

d — Displacement (any valid expression).

bd — Base displacement (any valid expression).

od — Outer displacement (any valid expression).

n — Register number (0 to 7).

Rn — Offset register n.

4-6

Using the 162Bug Debugger

4

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are
used to simplify the debugging of relocatable and position-
independent modules. The listing files in these types of programs
usually start at an address (normally 0) that is not the one at which
they are loaded, so it is harder to correlate addresses in the listing
with addresses in the loaded program. The offset registers solve this
problem by taking into account this difference and forcing the
display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping
ranges. The range for each offset register is set by two addresses:
base and top. Specifying the base and top addresses for an offset
register sets its range. In the event that an address falls in two or
more offset registers' ranges, the one that yields the least offset is
chosen.

Note Relative addresses are limited to 1MB (5 digits),
regardless of the range of the closest offset register.

Example: A portion of the listing file of an assembled, relocatable
module is shown below:

 1
 2 *
 3 * MOVE STRING SUBROUTINE
 4 *
 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)
 6 0 00000004 4280 CLR.L D0
 7 0 00000006 1018 MOVE.B (A0)+,D0
 8 0 00000008 5340 SUBQ.W #1,D0
 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+
 10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP
 11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
 12 0 00000014 4E75 RTS
 13
 14 END
****** TOTAL ERRORS 0——
****** TOTAL WARNINGS 0——

Entering Debugger Command Lines

4-7

4

The above program was loaded at address $0001327C.

The disassembled code is shown next:

162Bug>MD 1327C;DI
0001327C 48E78080 MOVEM.L D0/A0,—(A7)
00013280 4280 CLR.L D0
00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (A0)+,(A1)+
00013288 51C8FFFC DBF D0,$13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS
162Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as follows:

162Bug>OF R0
R0 =00000000 00000000? 1327C.
162Bug>MD 0+R0;DI
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
162Bug>

For additional information about the offset registers, refer to the
Debugging Package for Motorola 68K CISC CPUs User's Manual.

4-8

Using the 162Bug Debugger

4

Port Numbers

Some 162Bug commands give you the option to choose the port to
be used to input or output. Valid port numbers which may be used
for these commands are as follows:

❏ MVME162FX EIA-232-D Debug (Terminal Port 0 or 00)
(PORT 1 on the MVME162FX P2 connector). Sometimes
known as the "console port", it is used for interactive user
input/output by default.

❏ MVME162FX EIA-232-D (Terminal Port 1 or 01) (PORT 2 on
the MVME162FX P2 connector). Sometimes known as the
"host port", this is the default for downloading, uploading,
concurrent mode, and transparent modes.

Note These logical port numbers (0 and 1) are shown in the
pinouts of the MVME162FX module as "SERIAL PORT
1" and "SERIAL PORT 2", respectively. Physically, they
are all part of connector P2. They are also available at
the front panel DB-25 connectors J15 (for PORT 1 or A)
and J9 (for PORT 2 or B).

Entering and Debugging Programs
There are various ways to enter a user program into system
memory for execution. One way is to create the program using the
Memory Modify (MM) command with the
assembler/disassembler option. You enter the program one source
line at a time. After each source line is entered, it is assembled and
the object code is loaded to memory. Refer to the Debugging Package
for Motorola 68K CISC CPUs User's Manual for complete details of
the 162Bug Assembler/Disassembler.

Another way to enter a program is to download an object file from
a host system. The program must be in S-record format (described
in the Debugging Package for Motorola 68K CISC CPUs User's Manual)
and may have been assembled or compiled on the host system.

Calling System Utilities from User Programs

4-9

4

Alternately, the program may have been previously created using
the 162Bug MM command as outlined above and stored to the host
using the Dump (DU) command. A communication link must exist
between the host system and the MVME162FX port 1. (Hardware
configuration details are in the section on Installation and Startup in
Chapter 3.) The file is downloaded from the host to MVME162FX
memory by the Load (LO) command.

Another way is by reading in the program from disk, using one of
the disk commands (BO, BH, IOP). Once the object code has been
loaded into memory, you can set breakpoints if desired and run the
code or trace through it.

Calling System Utilities from User Programs
A convenient way of doing character input/output and many other
useful operations has been provided so that you do not have to
write these routines into the target code. You can access various
162Bug routines via one of the MC68040 TRAP instructions, using
vector #15. Refer to the Debugging Package for Motorola 68K CISC
CPUs User's Manual for details on the various TRAP #15 utilities
available and how to invoke them from within a user program.

Preserving the Debugger Operating
Environment

This section explains how to avoid contaminating the operating
environment of the debugger. 162Bug uses certain of the
MVME162FX onboard resources and also offboard system memory
to contain temporary variables, exception vectors, etc. If you
disturb resources upon which 162Bug depends, then the debugger
may function unreliably or not at all.

If your application enables translation through the Memory
Management Units (MMUs), and if your application utilizes
resources of the debugger (e.g., system calls), your application must

4-10

Using the 162Bug Debugger

4

create the necessary translation tables for the debugger to have
access to its various resources. The debugger honors the enabling of
the MMUs; it does not disable translation.

162Bug Vector Table and Workspace

As described in the Memory Requirements section in Chapter 3,
162Bug needs 64KB of read/write memory to operate. The 162Bug
reserves a 1024-byte area for a user program vector table area and
then allocates another 1024-byte area and builds an exception
vector table for the debugger itself to use. Next, 162Bug reserves
space for static variables and initializes these static variables to
predefined default values. After the static variables, 162Bug
allocates space for the system stack, then initializes the system stack
pointer to the top of this area.

With the exception of the first 1024-byte vector table area, you must
be extremely careful not to use the above-mentioned memory areas
for other purposes. You should refer to the Memory Requirements
section in Chapter 3 to determine how to dictate the location of the
reserved memory areas. If, for example, your program
inadvertently wrote over the static variable area containing the
serial communication parameters, these parameters would be lost,
resulting in a loss of communication with the system console
terminal. If your program corrupts the system stack, then an
incorrect value may be loaded into the processor Program Counter
(PC), causing a system crash.

Hardware Functions

The only hardware resources used by the debugger are the EIA-
232-D ports, which are initialized to interface to the debug terminal.
If these ports are reprogrammed, the terminal characteristics must
be modified to suit, or the ports should be restored to the debugger-
set characteristics prior to reinvoking the debugger.

Preserving the Debugger Operating Environment

4-11

4

Exception Vectors Used by 162Bug

The exception vectors used by the debugger are listed below. These
vectors must reside at the specified offsets in the target program's
vector table for the associated debugger facilities (breakpoints,
trace mode, etc.) to operate.

When the debugger handles one of the exceptions listed in Table 4-
2, the target stack pointer is left pointing past the bottom of the
exception stack frame created; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the
operation of the debugger facility (through an exception) is
transparent to users.

Table 4-2. Exception Vectors Used by 162Bug

Vector
Offset

Exception 162Bug Facility

$10 Illegal instruction Breakpoints (used by GO, GN,
GT)

$24 Trace Trace operations (such as T, TC,
TT)

$80-$B8 TRAP #0 - #14 Used internally

$BC TRAP #15 System calls

NOTE 1 Level 7 interrupt ABORT pushbutton

NOTE 2 Level 7 interrupt AC Fail

$DC FP Unimplemented
Data Type

Software emulation and data type
conversion of floating point data.

NOTES: 1. This depends on what the Vector Base Register (VBR) is
set to in the MC2 chip.

2. This depends on what the Vector Base Register (VBR) is
set to in the VMEchip2.

4-12

Using the 162Bug Debugger

4

Example: Trace one instruction using debugger.

162Bug>RD
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010000 203C0000 0001 MOVE.L #$1,D0
162Bug>T
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010006 D280 ADD.L D0,D1
162Bug>

Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. Your
program may either use the exception vector table provided by
162Bug or it may create a separate exception vector table of its own.
The two following sections detail these two methods.

Using 162Bug Target Vector Table

The 162Bug initializes and maintains a vector table area for target
programs. A target program is any program started by the bug,
either manually with GO or TR type commands or automatically
with the BO command. The start address of this target vector table
area is the base address of the debugger memory. This address is
loaded into the target-state VBR at power up and cold-start reset
and can be observed by using the RD command to display the
target-state registers immediately after power up.

Preserving the Debugger Operating Environment

4-13

4

The 162Bug initializes the target vector table with the debugger
vectors listed in Table 4-2 and fills the other vector locations with
the address of a generalized exception handler (refer to the 162Bug
Generalized Exception Handler section in this chapter). The target
program may take over as many vectors as desired by simply
writing its own exception vectors into the table. If the vector
locations listed in Table 4-2 are overwritten then the accompanying
debugger functions are lost.

The 162Bug maintains a separate vector table for its own use. In
general, you do not have to be aware of the existence of the
debugger vector table. It is completely transparent and you should
never make any modifications to the vectors contained in it.

Creating a New Vector Table

Your program may create a separate vector table in memory to
contain its exception vectors. If this is done, the program must
change the value of the VBR to point at the new vector table. In
order to use the debugger facilities you can copy the proper vectors
from the 162Bug vector table into the corresponding vector
locations in your program vector table.

The vector for the 162Bug generalized exception handler (described
in detail in the 162Bug Generalized Exception Handler section in this
chapter) may be copied from offset $08 (bus error vector) in the
target vector table to all locations in your program vector table
where a separate exception handler is not used. This provides
diagnostic support in the event that your program is stopped by an
unexpected exception. The generalized exception handler gives a
formatted display of the target registers and identifies the type of
the exception.

4-14

Using the 162Bug Debugger

4

The following is an example of a routine which builds a separate
vector table and then moves the VBR to point at it:

*
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR.
 LEA $10000,A1 New vectors at $10000.
 MOVE.L $80(A0),D0 Get generalized exception vector.
 MOVE.W $3FC,D1 Load count (all vectors).
LOOP MOVE.L D0,(A1,D1) Store generalized exception vector.
 SUBQ.W #4,D1
 BNE.B LOOP Initialize entire vector table.
 MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
 MOVE.L $24(A0),$24(A1) Copy trace vector.
 MOVE.L $BC(A0),$BC(A1) Copy system call vector.
 LEA.L COPROCC(PC),A2 Get your exception vector.
 MOVE.L A2,$2C(A1) Install as F-Line handler.
 MOVEC.L A1,VBR Change VBR to new table.
 RTS
 END

It may turn out that your program uses one or more of the exception
vectors that are required for debugger operation. Debugger
facilities may still be used, however, if your exception handler can
determine when to handle the exception itself and when to pass the
exception to the debugger.

When an exception occurs which you want to pass on to the
debugger; i.e., ABORT, your exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 162Bug target program
vector table (which your program saved), yielding the address of
the 162Bug exception vector. The program then jumps to the
address stored at this vector location, which is the address of the
162Bug exception handler.

Your program must make sure that there is an exception stack
frame in the stack and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

Preserving the Debugger Operating Environment

4-15

4

The following is an example of an exception handler which can pass
an exception along to the debugger:

*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.
 LINK A6,#0 Frame pointer for accessing PC space.
 MOVEM.L A0-A5/D0-D7,-(SP) Save registers.
 :
 : decide here if your code handles exception, if so, branch...
 :
 MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR.
 MOVE.W 14(A6),D0 Get the vector offset from stack frame.
 AND.W #$0FFF,D0 Mask off the format information.
 MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler.
 MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.
 UNLK A6
 RTS Put addr of exc handler into PC and go.

162Bug Generalized Exception Handler

The 162Bug has a generalized exception handler which it uses to
handle all of the exceptions not listed in Table 4-2. For all these
exceptions, the target stack pointer is left pointing to the top of the
exception stack frame created. In this way, if an unexpected
exception occurs during execution of your code, you are presented
with the exception stack frame to help determine the cause of the
exception. The following example illustrates this:

Example: Bus error at address $F00000. It is assumed for this
example that an access of memory location $F00000 initiates bus
error exception processing.

162Bug>RD
PC =00010000 SR =2708=TR:OFF_S._7_.N... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000002 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010000 203900F0 0000 MOVE.L ($F00000).L,D0
162Bug>T

4-16

Using the 162Bug Debugger

4

Exception: Access Fault (Local Off Board)
PC =FF839154 SR =2704
Format/Vector =7008
SSW =0145 Fault Address =00F00000 Effective Address =0000D4E8
PC =00010000 SR =2708=TR:OFF_S._7_.N... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000002 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFC0
00010000 203900F0 0000 MOVE.L ($F00000).L,D0
162Bug>

Notice that the target stack pointer is different. The target stack
pointer now points to the last value of the exception stack frame
that was stacked. The exception stack frame may now be examined
using the MD command.

162Bug>MD (A7):&30
0000FFC0 2708 0001 0000 7008 0000 FFFC 0105 0005
'.....p.........
0000FFD0 0005 0005 00F0 0000 0000 0A64 0000 FFF4
...........d....
0000FFE0 00F0 0000 FFFF FFFF 00F0 0000 FFFF FFFF
................
0000FFF0 2708 0001 A708 0001 0000 0000 '...........
162Bug>

Floating Point Support
The floating point unit (FPU) of the MC68040 microprocessor chip
is supported in 162Bug. For MVME162Bug, the commands MD,
MM, RM, and RS have been extended to allow display and
modification of floating point data in registers and in memory.
Floating point instructions can be assembled/disassembled with
the DI option of the MD and MM commands.

Floating Point Support

4-17

4

Valid data types that can be used when modifying a floating point
data register or a floating point memory location:

When entering data in single, double, extended precision, or
packed decimal format, the following rules must be observed:

1. The sign field is the first field and is a binary field.

2. The exponent field is the second field and is a hexadecimal
field.

3. The mantissa field is the last field and is a hexadecimal field.

4. The sign field, the exponent field, and at least the first digit of
the mantissa field must be present (any unspecified digits in
the mantissa field are set to zero).

5. Each field must be separated from adjacent fields by an
underscore.

6. All the digit positions in the sign and exponent fields must be
present.

Integer Data Types

12 Byte
1234 Word
12345678 Longword

Floating Point Data Types

1_FF_7FFFFF Single Precision Real Format
1_7FF_FFFFFFFFFFFFF Double Precision Real Format
1_7FFF_FFFFFFFFFFFFFFFF Extended Precision Real Format
1111_2103_123456789ABCDEF01 Packed Decimal Real Format
-3.12345678901234501_E+123 Scientific Notation Format (decimal)

4-18

Using the 162Bug Debugger

4

Single Precision Real

This format would appear in memory as:

A single precision number takes 4 bytes in memory.

Double Precision Real

This format would appear in memory as:

A double precision number takes 8 bytes in memory.

Note The single and double precision formats have an
implied integer bit (always 1).

Extended Precision Real

This format would appear in memory as:

An extended precision number takes 10 bytes in memory.

1-bit sign field (1 binary digit)
8-bit biased exponent field (2 hex digits. Bias = $7F)

23-bit fraction field (6 hex digits)

1-bit sign field (1 binary digit)
11-bit biased exponent field (3 hex digits. Bias = $3FF)
52-bit fraction field (13 hex digits)

1-bit sign field (1 binary digit)
15-bit biased exponent field (4 hex digits. Bias = $3FFF)
64-bit mantissa field (16 hex digits)

Floating Point Support

4-19

4

Packed Decimal Real

This format would appear in memory as:

A packed decimal number takes 12 bytes in memory.

Scientific Notation

This format provides a convenient way to enter and display a
floating point decimal number. Internally, the number is assembled
into a packed decimal number and then converted into a number of
the specified data type.

Entering data in this format requires the following fields:

❏ An optional sign bit (+ or -).

❏ One decimal digit followed by a decimal point.

❏ Up to 17 decimal digits (at least one must be entered).

❏ An optional Exponent field that consists of:

– An optional underscore.

– The Exponent field identifier, letter "E".

– An optional Exponent sign (+, -).

– From 1 to 3 decimal digits.

For more information about the MC68040 floating point unit, refer
to the M68040 Microprocessor User's Manual.

4-bit sign field (4 binary digits)
16-bit exponent field (4 hex digits)
68-bit mantissa field (17 hex digits)

4-20

Using the 162Bug Debugger

4

The 162Bug Debugger Command Set
The 162Bug debugger commands are summarized in Table 4-3.

HE is the 162Bug help facility. HE <CR> displays only the
command names of all available commands along with their
appropriate titles. HE COMMAND displays only the command
name and title for that particular command, plus its complete
command syntax. The command syntax is shown using the
symbols explained earlier in this chapter.

The CNFG and ENV commands are explained in Chapter 5.
Controllers, devices, and their LUNs are listed in Appendix B or
Appendix C. All other command details are explained in the
Debugging Package for Motorola 68K CISC CPUs User's Manual.

Table 4-3. Debugger Commands

Command
Mnemonic

Title

AB Automatic Bootstrap Operating
System

NOAB No Autoboot

AS One Line Assembler

BC Block of Memory Compare

BF Block of Memory Fill

BH Bootstrap Operating System and Halt

BI Block of Memory Initialize

BM Block of Memory Move

BO Bootstrap Operating System

BR Breakpoint Insert

NOBR Breakpoint Delete

BS Block of Memory Search

BV Block of Memory Verify

The 162Bug Debugger Command Set

4-21

4

CM Concurrent Mode

NOCM No Concurrent Mode

CNFG Configure Board Information Block

CS Checksum

DC Data Conversion

DMA DMA Block of Memory Move

DS One Line Disassembler

DU Dump S-records

ECHO Echo String

ENV Set Environment to Bug/Operating
System

GD Go Direct (Ignore Breakpoints)

GN Go to Next Instruction

GO Go Execute User Program

GT Go to Temporary Breakpoint

HE Help

IOC I/O Control for Disk

IOI I/O Inquiry

IOP I/O Physical (Direct Disk Access)

IOT I/O "TEACH" for Configuring Disk
Controller

IRQM Interrupt Request Mask

LO Load S-records from Host

MA Macro Define/Display

NOMA Macro Delete

Table 4-3. Debugger Commands (Continued)

Command
Mnemonic

Title

4-22

Using the 162Bug Debugger

4

MAE Macro Edit

MAL Enable Macro Expansion Listing

NOMAL Disable Macro Expansion Listing

MAW Save Macros

MAR Load Macros

MD Memory Display

MENU Menu

MM Memory Modify

MMD Memory Map Diagnostic

MS Memory Set

MW Memory Write

NAB Automatic Network Boot Operating
System

NBH Network Boot Operating System and
Halt

NBO Network Boot Operating System

NIOC Network I/O Control

NIOP Network I/O Physical

NIOT Network I/O Teach

NPING Network Ping

OF Offset Registers Display/Modify

PA Printer Attach

NOPA Printer Detach

PF Port Format

NOPF Port Detach

Table 4-3. Debugger Commands (Continued)

Command
Mnemonic

Title

The 162Bug Debugger Command Set

4-23

4

PFLASH Program FLASH Memory

PS Put RTC Into Power Save Mode for
Storage

RB ROMboot Enable

NORB ROMboot Disable

RD Register Display

REMOTE Connect the Remote Modem to CSO

RESET Cold/Warm Reset

RL Read Loop

RM Register Modify

RS Register Set

SD Switch Directories

SET Set Time and Date

SYM Symbol Table Attach

NOSYM Symbol Table Detach

SYMS Symbol Table Display/Search

T Trace

TA Terminal Attach

TC Trace on Change of Control Flow

TIME Display Time and Date

TM Transparent Mode

TT Trace to Temporary Breakpoint

VE Verify S-records Against Memory

VER Display Revision/Version

WL Write Loop

Table 4-3. Debugger Commands (Continued)

Command
Mnemonic

Title

4-24

Using the 162Bug Debugger

4

5

5-1

5Configure and Environment
Commands

Configure Board Information Block
CNFG [;[I][M]]

This command is used to display and configure the board
information block. This block is resident within the Non-Volatile
RAM (NVRAM). Refer to the MVME162FX Embedded Controller
Programmer's Reference Guide for the actual location. The
information block contains various elements detailing specific
operation parameters of the hardware. The MVME162 Embedded
Controller Programmer's Reference Guide describes the elements
within the board information block, and lists the size and logical
offset of each element. The CNFG command does not describe the
elements and their use. The board information block contents are
checksummed for validation purposes. This checksum is the last
element of the block.

Although the factory fills all fields except the IndustryPack fields,
only these fields MUST contain correct information:

❏ MPU clock speed

❏ Ethernet address

❏ Local SCSI identifier

Example: to display the current contents of the board information
block.

162-Bug> cnfg
Board (PWA) Serial Number = "000000061050"

Board Identifier = "MVME162-513A "

Artwork (PWA) Identifier = "01-W3960B01A "

MPU Clock Speed = "3200"

Ethernet Address = 08003E20A867

Local SCSI Identifier = "07"

Parity Memory Mezzanine Artwork (PWA) Identifier = " "

5-2

Configure and Environment Commands

5

Parity Memory Mezzanine (PWA) Serial Number = " "

Static Memory Mezzanine Artwork (PWA) Identifier = " "

Static Memory Mezzanine (PWA) Serial Number = " "

ECC Memory Mezzanine #1 Artwork (PWA) Identifier = " "

ECC Memory Mezzanine #1 (PWA) Serial Number = " "

ECC Memory Mezzanine #2 Artwork (PWA) Identifier = " "

ECC Memory Mezzanine #2 (PWA) Serial Number = " "

Serial Port 2 Personality Artwork (PWA) Identifier = " "

Serial Port 2 Personality Module (PWA) Serial Number = " "

IndustryPack A Board Identifier = " "

IndustryPack A (PWA) Serial Number = " "

IndustryPack A Artwork (PWA) Identifier = " "

IndustryPack B Board Identifier = " "

IndustryPack B (PWA) Serial Number = " "

IndustryPack B Artwork (PWA) Identifier = " "

IndustryPack C Board Identifier = " "

IndustryPack C (PWA) Serial Number = " "

IndustryPack C Artwork (PWA) Identifier = " "

IndustryPack D Board Identifier = " "

IndustryPack D (PWA) Serial Number = " "

IndustryPack D Artwork (PWA) Identifier = " "

162-Bug>

Note that the parameters that are quoted are left-justified character
(ASCII) strings padded with space characters, and the quotes (") are
displayed to indicate the size of the string. Parameters that are not
quoted are considered data strings, and data strings are right-
justified. The data strings are padded with zeroes if the length is not
met.

In the event of corruption of the board information block, the
command displays a question mark "?" for nondisplayable
characters. A warning message (WARNING: Board Information Block

Checksum Error) is also displayed in the event of a checksum
failure.

Using the I option initializes the unused area of the board
information block to zero.

Set Environment to Bug/Operating System

5-3

5

Modification is permitted by using the M option of the command.
At the end of the modification session, you are prompted for the
update to Non-Volatile RAM (NVRAM). A Y response must be
made for the update to occur; any other response terminates the
update (disregards all changes). The update also recalculates the
checksum.

Be cautious when modifying parameters. Some of these parameters
are set up by the factory, and correct board operation relies upon
these parameters.

Once modification/update is complete, you can now display the
current contents as described earlier.

Set Environment to Bug/Operating System
ENV [;[D]]

The ENV command allows you to interactively view/configure all
Bug operational parameters that are kept in Battery Backed Up
RAM (BBRAM), also known as Non-Volatile RAM (NVRAM). The
operational parameters are saved in NVRAM and used whenever
power is lost.

Any time the Bug uses a parameter from NVRAM, the NVRAM
contents are first tested by checksum to insure the integrity of the
NVRAM contents. In the instance of BBRAM checksum failure,
certain default values are assumed as stated below.

The bug operational parameters (which are kept in NVRAM) are
not initialized automatically on power up/warm reset. It is up to
the Bug user to invoke the ENV command. Once the ENV
command is invoked and executed without error, Bug default
and/or user parameters are loaded into NVRAM along with
checksum data.

5-4

Configure and Environment Commands

5

If any of the operational parameters have been modified, the new
parameters do not go into effect until a reset/powerup condition
occurs. Should you determine that the NVRAM contents have been
corrupted, use a double-button reset (described under Restarting the
System in Chapter 3) to reinitialize the system.

If the ENV command is invoked with no options on the command
line, you are prompted to configure all operational parameters. If
the ENV command is invoked with the option D, ROM defaults
will be loaded into NVRAM.

The parameters to be configured are listed in the following table:

Table 5-1. ENV Command Parameters

ENV Parameter and Options Default Meaning of Default

Bug or System environment [B/S] B Bug mode

Field Service Menu Enable [Y/N] N Do not display field
service menu.

Remote Start Method Switch [G/M/B/N] B Use both methods (Global
Control and Status
Register (GCSR) in the
VMEchip2, and the
Multiprocessor Control
Register (MPCR) in
shared RAM) to pass and
start execution of cross-
loaded programs.

Probe System for Supported I/O Controllers
[Y/N]

Y Accesses will be made to
the appropriate system
busses (e.g., VMEbus,
local bus) to determine
presence of supported
controllers.

Set Environment to Bug/Operating System

5-5

5

Negate VMEbus SYSFAIL* Always [Y/N] N Negate VMEbus
SYSFAIL after successful
completion or entrance
into the bug command
monitor.

Local SCSI Bus Reset on Debugger Startup
[Y/N]

N Local SCSI bus is not reset
on debugger startup.

Local SCSI Bus Negotiations Type [A/S/N] A Asynchronous

Industry Pack Reset on Debugger Startup
[Y/N]

Y Industry Pack(s) is/are
reset on debugger startup.

Ignore CFGA Block on a Hard Disk Boot
[Y/N]

Y Enable the ignorance of
the Configuration Area
(CFGA) Block (hard disk
only).

Auto Boot Enable [Y/N] N Auto Boot function is
disabled.

Auto Boot at power-up only [Y/N] Y Auto Boot is attempted at
power-up reset only.

Auto Boot Controller LUN 00 LUN of a disk/tape
controller module
currently supported by
the Bug. Default is $0.

Auto Boot Device LUN 00 LUN of a disk/tape
device currently
supported by the Bug.
Default is $0.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-6

Configure and Environment Commands

5

Auto Boot Abort Delay 15 The time in seconds that
the Auto Boot sequence
will delay before starting
the boot. The purpose for
the delay is to allow you
the option of stopping the
boot by use of the Break
key. The time value is
from 0 through 255
seconds.

Auto Boot Default String [Y(NULL
String)/(String)]

You may specify a string
(filename) which is
passed on to the code
being booted. Maximum
length is 16 characters.
Default is the null string.

ROM Boot Enable [Y/N] N ROMboot function is
disabled.

ROM Boot at power-up only [Y/N] Y ROMboot is attempted at
power up only.

ROM Boot Enable search of VMEbus [Y/N] N VMEbus address space
will not be accessed by
ROMboot.

ROM Boot Abort Delay 00 The time in seconds that
the ROMboot sequence
will delay before starting
the boot. The purpose for
the delay is to allow you
the option of stopping the
boot by use of the Break
key. The time value is
from 0 through 255
seconds.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-7

5

ROM Boot Direct Starting Address FF800000 First location tested when
the Bug searches for a
ROMboot Module.

ROM Boot Direct Ending Address FFDFFFF
C

Last location tested when
the Bug searches for a
ROMboot Module.

Network Auto Boot Enable [Y/N] N Network Auto Boot
function is disabled.

Network Auto Boot at power-up only [Y/N] Y Network Auto Boot is
attempted at power up
reset only.

Network Auto Boot Controller LUN 00 LUN of a disk/tape
controller module
currently supported by
the Bug. Default is $0.

Network Auto Boot Device LUN 00 LUN of a disk/tape
device currently
supported by the Bug.
Default is $0.

Network Auto Boot Abort Delay 5 This is the time in seconds
that the Network Boot
sequence will delay
before starting the boot.
The purpose for the delay
is to allow you the option
of stopping the boot by
use of the Break key. The
time value is from 0
through 255 seconds.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-8

Configure and Environment Commands

5

Network Autoboot Configuration
Parameters Pointer (NVRAM)

00000000 The address where the
network interface
configuration parameters
are to be saved/retained
in NVRAM; these
parameters are the
necessary parameters to
perform an unattended
network boot.
If you are using NVRAM
space for your own
program information or
commands, change the
default pointer value to
the value necessary to
clear your data.

Memory Search Starting Address 00000000 Where the Bug begins to
search for a work page (a
64KB block of memory) to
use for vector table, stack,
and variables. This must
be a multiple of the
debugger work page,
modulo $10000 (64KB). In
a multi-162FX
environment, each
MVME162FX board
could be set to start its
work page at a unique
address to allow multiple
debuggers to operate
simultaneously.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-9

5

Memory Search Ending Address 00100000 Top limit of the Bug's
search for a work page. If
a contiguous block of
memory, 64KB in size, is
not found in the range
specified by Memory
Search Starting Address
and Memory Search
Ending Address
parameters, then the bug
will place its work page in
the onboard static RAM
on the MVME162FX.
Default Memory Search
Ending Address is the
calculated size of local
memory.

Memory Search Increment Size 00010000 A multi-CPU feature used
to offset the location of the
Bug work page. This must
be a multiple of the
debugger work page,
modulo $10000 (64KB).
Typically, Memory Search
Increment Size is the
product of CPU number
and size of the Bug work
page. Example: first CPU
$0 (0 x $10000), second
CPU $10000 (1 x $10000),
etc.

Memory Search Delay Enable [Y/N] N No delay before the Bug
begins its search for a
work page.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-10

Configure and Environment Commands

5

Memory Search Delay Address FFFFD20F Default address is
$FFFFD20F. This is the
MVME162FX GCSR
GPCSR0 as accessed
through VMEbus A16
space and assumes the
MVME162FX GRPAD
(group address) and
BDAD (board address
within group) switches
are set to "on". This byte-
wide value is initialized to
$FF by MVME162FX
hardware after a System
or Power-on Reset. In a
multi-162FX
environment, where the
work pages of several
Bugs are to reside in the
memory of the primary
(first) MVME162FX, the
non-primary CPUs will
wait for the data at the
Memory Search Delay
Address to be set to $00,
$01, or $02 (refer to the
Memory Requirements
section in Chapter 3 for
the definition of these
values) before attempting
to locate their work page
in the memory of the
primary CPU.

Memory Size Enable [Y/N] Y Memory will be sized for
Self Test diagnostics.

Memory Size Starting Address 00000000 Default Starting Address
is $0.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-11

5

Memory Size Ending Address 00100000 Default Ending Address
is the calculated size of
local memory.

Base Address of Dynamic Memory 00000000 Beginning address of
Dynamic Memory (Parity
and/or ECC type
memory). It must be a
multiple of the Dynamic
Memory board size,
starting with 0. Default is
$0.

Size of Parity Memory 00100000 Size of the Parity type
dynamic RAM
mezzanine, if any. The
default is the calculated
size of the Dynamic
memory mezzanine
board.

Size of ECC Memory Board #0 00000000 Size of the first ECC type
memory mezzanine. The
default is the calculated
size of the memory
mezzanine.

Size of ECC Memory Board #1 00000000 Size of the second ECC
type memory mezzanine.
The default is the
calculated size of the
memory mezzanine.

Base Address of Static Memory FFE00000 The beginning address of
SRAM. The default for
this parameter is
FFE00000 for the onboard
512KB.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-12

Configure and Environment Commands

5

Size of Static Memory 00080000 Size of the SRAM type
memory present. The
default is the calculated
size of the onboard
SRAM.

ENV asks the following series of questions to set up the VMEbus interface for the
MVME162FX series modules. You should have a working knowledge of the VMEchip2
as given in the MVME162FX Embedded Controller Programmer's Reference Guide in order
to perform this configuration. Also included in this series are questions for setting ROM
and Flash access time.
The slave address decoders are used to allow another VMEbus master to access a local
resource of the MVME162FX. There are two slave address decoders set. They are set up
as follows:

Slave Enable #1 [Y/N] Y Yes, set up and enable the
Slave Address Decoder
#1.

Slave Starting Address #1 00000000 Base address of the local
resource that is accessible
by the VMEbus. Default is
the base of local memory,
$0.

Slave Ending Address #1 000FFFFF Ending address of the
local resource that is
accessible by the
VMEbus. Default is the
end of calculated memory.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-13

5

Slave Address Translation Address #1 00000000 Register that allows the
VMEbus address and the
local address to be
different. The value in this
register is the base
address of local resource
that is associated with the
starting and ending
address selection from the
previous questions.
Default is 0.

Slave Address Translation Select #1 00000000 Register that defines
which bits of the address
are significant. A logical
one "1" indicates
significant address bits,
logical zero "0" is non-
significant. Default is 0.

Slave Control #1 03FF Defines the access
restriction for the address
space defined with this
slave address decoder.
Default is $03FF.

Slave Enable #2 [Y/N] N Do not set up and enable
the Slave Address
Decoder #2.

Slave Starting Address #2 00000000 Base address of the local
resource that is accessible
by the VMEbus. Default is
0.

Slave Ending Address #2 00000000 Ending address of the
local resource that is
accessible by the
VMEbus. Default is 0.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-14

Configure and Environment Commands

5

Slave Address Translation Address #2 00000000 Works the same as Slave
Address Translation
Address #1. Default is 0.

Slave Address Translation Select #2 00000000 Works the same as Slave
Address Translation
Select #1. Default is 0.

Slave Control #2 0000 Defines the access
restriction for the address
space defined with this
slave address decoder.
Default is $0000.

Master Enable #1 [Y/N] Y Yes, set up and enable the
Master Address Decoder
#1.

Master Starting Address #1 02000000 Base address of the
VMEbus resource that is
accessible from the local
bus. Default is the end of
calculated local memory,
unless memory is less
than 16MB, then this
register will always be set
to 01000000.

Master Ending Address #1 EFFFFFFF Ending address of the
VMEbus resource that is
accessible from the local
bus. Default is the end of
calculated memory.

Master Control #1 0D Defines the access
characteristics for the
address space defined
with this master address
decoder. Default is $0D.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-15

5

Master Enable #2 [Y/N] N Do not set up and enable
the Master Address
Decoder #2.

Master Starting Address #2 00000000 Base address of the
VMEbus resource that is
accessible from the local
bus. Default is $00000000.

Master Ending Address #2 00000000 Ending address of the
VMEbus resource that is
accessible from the local
bus. Default is $00000000.

Master Control #2 00 Defines the access
characteristics for the
address space defined
with this master address
decoder. Default is $00.

Master Enable #3 [Y/N] Y Yes, set up and enable the
Master Address Decoder
#3. This is the default if
the board contains less
than 16MB of calculated
RAM.
Do not set up and enable
the Master Address
Decoder #3. This is the
default for boards
containing at least 16MB
of calculated RAM.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-16

Configure and Environment Commands

5

Master Starting Address #3 00000000 Base address of the
VMEbus resource that is
accessible from the local
bus. If enabled, the value
is calculated as one more
than the calculated size of
memory. If not enabled,
the default is $00000000.

Master Ending Address #3 00000000 Ending address of the
VMEbus resource that is
accessible from the local
bus. If enabled, the
default is $00FFFFFF,
otherwise $00000000.

Master Control #3 00 Defines the access
characteristics for the
address space defined
with this master address
decoder. If enabled, the
default is $3D, otherwise
$00.

Master Enable #4 [Y/N] N Do not set up and enable
the Master Address
Decoder #4.

Master Starting Address #4 00000000 Base address of the
VMEbus resource that is
accessible from the local
bus. Default is $0.

Master Ending Address #4 00000000 Ending address of the
VMEbus resource that is
accessible from the local
bus. Default is $0.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-17

5

Master Address Translation Address #4 00000000 Register that allows the
VMEbus address and the
local address to be
different. The value in this
register is the base
address of VMEbus
resource that is
associated with the
starting and ending
address selection from the
previous questions.
Default is 0.

Master Address Translation Select #4 00000000 Register that defines
which bits of the address
are significant. A logical
one "1" indicates
significant address bits,
logical zero "0" is non-
significant. Default is 0.

Master Control #4 00 Defines the access
characteristics for the
address space defined
with this master address
decoder. Default is $00.

Short I/O (VMEbus A16) Enable [Y/N] Y Yes, Enable the Short I/O
Address Decoder.

Short I/O (VMEbus A16) Control 01 Defines the access
characteristics for the
address space defined
with the Short I/O
address decoder. Default
is $01.

F-Page (VMEbus A24) Enable [Y/N] Y Yes, Enable the F-Page
Address Decoder.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-18

Configure and Environment Commands

5

F-Page (VMEbus A24) Control 02 Defines the access
characteristics for the
address space defined
with the F-Page address
decoder. Default is $02.

ROM Access Time Code 03 Defines the ROM access
time. The default is $03,
which sets an access time
of 180 ns.

Flash Access Time Code 02 Defines the Flash access
time. The default is $02,
which sets an access time
of 140 ns.

MC2 chip Vector Base
VMEC2 Vector Base #1
VMEC2 Vector Base #2

05
06
07

Base interrupt vector for
the component specified.
Default: MC2 chip = $05,
VMEchip2 Vector 1 = $06,
VMEchip2 Vector 2 = $07.

VMEC2 GCSR Group Base Address D2 Specifies the group
address ($FFFFxx00) in
Short I/O for this board.
Default = $D2.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

5-19

5

Configuring the IndustryPacks

ENV asks the following series of questions to set up IndustryPacks
(IP) on MVME162FX modules.

The MVME162FX Embedded Controller Programmer's Reference Guide
describes the base addresses and the IP register settings. Refer to
that manual for information on setting base addresses and register
bits.

IP A Base Address = 00000000?
IP B Base Address = 00000000?
IP C Base Address = 00000000?
IP D Base Address = 00000000?

Base address for mapping IP modules. Only the upper 16 bits are
significant.

IP D/C/B/A Memory Size = 00000000?

VMEC2 GCSR Board Base Address 00 Specifies the base address
($FFFFD2xx) in Short I/O
for this board.
Default = $00.

VMEbus Global Time Out Code 01 Controls the VMEbus
timeout when systems
controller.
Default $01 = 64 µs.

Local Bus Time Out Code 02 This controls the local
bus timeout.
Default $02 = 256 µs.

VMEbus Access Time Out Code 02 This controls the local
bus to VMEbus access
timeout.
Default $02 = 32 ms.

Table 5-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

5-20

Configure and Environment Commands

5

Define the memory size requirements for the IP modules:

IP D/C/B/A General Control = 00000000?

Define the general control requirements for the IP modules:

IP D/C/B/A Interrupt 0 Control = 00000000?

Define the interrupt control requirements for the IP modules
channel 0:

Bits IP Register
Address

31-24 D FFFBC00F

23-16 C FFFBC00E

15-08 B FFFBC00D

07-00 A FFFBC00C

Bits IP Register
Address

31-24 D FFFBC01B

23-16 C FFFBC01A

15-08 B FFFBC019

07-00 A FFFBC018

Bits IP Register
Address

31-24 D FFFBC016

23-16 C FFFBC014

15-08 B FFFBC012

07-00 A FFFBC010

Set Environment to Bug/Operating System

5-21

5

IP D/C/B/A Interrupt 1 Control = 00000000?

Define the interrupt control requirements for the IP modules
channel 1:

Bits IP Register
Address

31-24 D FFFBC017

23-16 C FFFBC015

15-08 B FFFBC013

07-00 A FFFBC011

5-22

Configure and Environment Commands

5

A

A-1

ASerial Interconnections

Introduction
As described in previous chapters of this manual, one of the
MVME162FX’s two serial ports (port A internally, SERIAL PORT
1/CONSOLE on the front panel) is an EIA-232-D DCE port
exclusively. The second port (port B internally, SERIAL PORT 2 on the
front panel) can be configured via serial interface modules as an
EIA-232-D DCE/DTE, an EIA-530 DCE/DTE port, an EIA-485 port,
or an EIA-422 DCE/DTE port.

The MVME162FX uses a Zilog Z85230 serial port controller to
implement the two serial communications interfaces. Each interface
supports CTS, DCD, RTS, and DTR control signals as well as the
TxD and RxD transmit/receive data signals, and TxC/RxC
synchronous clock signals. The Z85230 supports synchronous
(SDLC/HDLC) and asynchronous protocols. The MVME162FX
hardware supports asynchronous serial baud rates of 110B/sec to
38.4KB/sec.

EIA-232-D Connections
The EIA-232-D standard defines the electrical and mechanical
aspects of this serial interface. The interface employs unbalanced
(single-ended) signaling and is generally used with DB25
connectors, although other connector styles (e.g., DB9 and RJ45) are
sometimes used as well.

Table A-1 lists the standard EIA-232-D interconnections. Not all
pins listed in the table are necessary in every application.

To interpret the information correctly, remember that the EIA-232-
D serial interface was developed to connect a terminal to a modem.
Serial data leaves the sending device on a Transmit Data (TxD) line
and arrives at the receiving device on a Receive Data (RxD) line.

A-2

Serial Interconnections
A

When computing equipment is interconnected without modems,
one of the units must be configured as a terminal (data terminal
equipment: DTE) and the other as a modem (data circuit-
terminating equipment: DCE). Since computers are normally
configured to work with terminals, they are said to be configured as
a modem in most cases.

Table A-1. EIA-232-D Interconnections

Pin
Number

Signal
Mnemonic

Signal Name and Description

1 Not used.

2 TxD Transmit Data. Data to be transmitted; input to modem from terminal.

3 RxD Receive Data. Data which is demodulated from the receive line; output
from modem to terminal.

4 RTS Request To Send. Input to modem from terminal when required to
transmit a message. With RTS off, the modem carrier remains off. When
RTS is turned on, the modem immediately turns on the carrier.

5 CTS Clear To Send. Output from modem to terminal to indicate that message
transmission can begin. When a modem is used, CTS follows the off-to-
on transition of RTS after a time delay.

6 DSR Data Set Ready. Output from modem to terminal to indicate that the
modem is ready to send or receive data.

7 SG Signal Ground. Common return line for all signals at the modem
interface.

8 DCD Data Carrier Detect. Output from modem to terminal to indicate that a
valid carrier is being received.

9-14 Not used.

15 TxC Transmit Clock (DCE). Output from modem to terminal; clocks data
from the terminal to the modem.

16 Not used.

17 RxC Receive Clock. Output from terminal to modem; clocks input data from
the terminal to the modem.

18, 19 Not used.

20 DTR Data Terminal Ready. Input to modem from terminal; indicates that the
terminal is ready to send or receive data.

21 Not used.

EIA-232-D Connections

A-3

A

Notes 1. A high EIA-232-D signal level is +3 to +15 volts. A low level is
–3 to –15 volts. Connecting units in parallel may produce out-of-
range voltages and is contrary to specifications.

2. The EIA-232-D interface is intended to connect a terminal to a
modem. When computers are connected without modems, one
computer must be configured as a modem and the other as a
terminal.

22 RI Ring Indicator. Output from modem to terminal; indicates that an
incoming call is present. The terminal causes the modem to answer the
phone by carrying DTR true while RI is active.

23 Not used.

24 TxC Transmit Clock (DTE). Input to modem from terminal; same function as
TxC on pin 15.

25 BSY Busy. Input to modem from terminal; a positive EIA signal applied to
this pin causes the modem to go off-hook and make the associated
phone busy.

Table A-1. EIA-232-D Interconnections (Continued)

Pin
Number

Signal
Mnemonic

Signal Name and Description

A-4

Serial Interconnections
A

Interface Characteristics

The EIA-232-D interface standard specifies all parameters for serial
binary data interchange between DTE and DCE devices using
unbalanced lines. EIA-232-D transmitter and receiver parameters
applicable to the MVME162FX are listed in Tables A-2 and A-3.

Table A-2. EIA-232-D Interface Transmitter Characteristics

Parameter
Value

Minimum Maximum
Unit

Output voltage (with load resistance of 3000Ω to 7000Ω) ±8.5 V

Open circuit output voltage ±12 V

Short circuit output current (to ground or any other
interconnection cable conductor)

±100 mA

Power off output resistance 300 W

Output transition time (for a transition region of –3V to +3V
and with total load capacitance, including connection cable, of
less than 2500pF)

2 µs

Open circuit slew rate 30 V/µs

Table A-3. EIA-232-D Interface Receiver Characteristics

Parameter
Value

Minimum Maximum
Unit

Input signal voltage ±25 V

Input high threshold voltage 2.25 V

Input low threshold voltage 0.75 V

Input hysteresis 1.0 V

Input impedance (–15V < Vin < +15V) 3000 7000 W

EIA-530 Connections

A-5

A

The MVME162FX conforms to EIA-232-D specifications. Note that
although the EIA-232-D standard recommends the use of short
interconnection cables not more than 50 feet (15m) in length, longer
cables are permissible provided the total load capacitance
measured at the interface point and including signal terminator
does not exceed 2500pF.

EIA-530 Connections
The EIA-530 interface complements the EIA-232-D interface in
function. The EIA-530 standard defines the mechanical aspects of
this interface, which is used for transmission of serial binary data,
both synchronous and asynchronous. It is adaptable to balanced
(double-ended) as well as unbalanced (single-ended) signaling and
offers the possibility of higher data rates than EIA-232-D with the
same DB25 connector.

Table A-4 lists the EIA-530 interconnections that are available at
serial port B (SERIAL PORT 2 on the front panel) when the port is
configured via serial interface modules as an EIA-530 DCE or DTE
port.

Table A-4. Serial Port B EIA-530 Interconnect Signals

Pin
Number

Signal
Mnemonic

Signal Name and Description

1 Not used.

2 TxD_A Transmit Data (A). Data to be transmitted; output from DTE to DCE.

3 RxD_A Receive Data (A). Data which is demodulated from the receive line;
input from DCE to DTE.

4 RTS_A Request to Send (A). Output from DTE to DCE when required to
transmit a message.

5 CTS_A Clear to Send (A). Input to DTE from DCE to indicate that message
transmission can begin.

6 DSR_A Data Set Ready (A). Input to DTE from DCE to indicate that the DCE is
ready to send or receive data. In DCE configuration, always true.

A-6

Serial Interconnections
A

7 SIG GND Signal Ground. Common return line for all signals.

8 DCD_A Data Carrier Detect (A). Receive line signal detector output from DCE to
DTE to indicate that valid data is being transferred to the DTE on the
RxD line.

9 RxC_B Receive Signal Element Timing—DCE (B). Control signal that clocks
input data.

10 DCD_B Data Carrier Detect (B). Receive line signal detector output from DCE to
DTE to indicate that valid data is being transferred to the DTE on the
RxD line.

11 TxCO_B Transmit Signal Element Timing—DTE (B). Control signal that clocks
output data.

12 TxC_B Transmit Signal Element Timing—DCE (B). Control signal that clocks
input data.

13 CTS_B Clear to Send (B). Input to DTE from DCE to indicate that message
transmission can begin.

14 TxD_B Transmit Data (B). Data to be transmitted; output from DTE to DCE.

15 TxC_A Transmit Signal Element Timing—DCE (A). Control signal that clocks
input data.

16 RxD_B Receive Data (B). Data which is demodulated from the receive line;
input from DCE to DTE.

17 RxC_A Receive Signal Element Timing—DCE (A). Control signal that clocks
input data.

18 LL_A Local Loopback (A). Reroutes signal within local DCE. In DTE
configuration, always tied inactive and driven false. In DCE
configuration, ignored.

19 RTS_B Request to Send (B). Output from DTE to DCE when required to
transmit a message.

20 DTR_A Data Terminal Ready (A). Output from DTE to DCE indicating that the
DTE is ready to send or receive data.

21 RL_A Remote Loopback (A). Reroutes signal within remote DCE. In DTE
configuration, always tied inactive and driven false. In DCE
configuration, ignored.

Table A-4. Serial Port B EIA-530 Interconnect Signals (Continued)

Pin
Number

Signal
Mnemonic

Signal Name and Description

EIA-530 Connections

A-7

A

Interface Characteristics

In specifying parameters for serial binary data interchange between
DTE and DCE devices, the EIA-530 standard assumes the use of
balanced lines, except for the Remote Loopback, Local Loopback,
and Test Mode lines, which are single-ended. Balanced-line data
interchange is generally employed in preference to unbalanced-line
data interchange where any of the following conditions prevail:

❏ The interconnection cable is too long for effective unbalanced
operation.

❏ The interconnection cable is exposed to extraneous noise
sources that may cause an unwanted voltage in excess of ±1V
measured differentially between the signal conductor and
circuit ground at the load end of the cable, with a 50Ω resistor
substituted for the transmitter.

❏ It is necessary to minimize interference with other signals.

❏ Inversion of signals may be required (e.g., plus polarity
MARK to minus polarity MARK may be achieved by
inverting the cable pair).

22 DSR_B Data Set Ready (B). Input to DTE from DCE to indicate that the DCE is
ready to send or receive data. In DCE configuration, always true.

23 DTR_B Data Terminal Ready (B). Output from DTE to DCE indicating that the
DTE is ready to send or receive data.

24 TxCO_A Transmit Signal Element Timing—DTE (A). Control signal that clocks
output data.

25 TM_A Test Mode (A). Indicates whether the local DCE is under test. In DTE
configuration, ignored. In DCE configuration, always tied inactive and
driven false.

Table A-4. Serial Port B EIA-530 Interconnect Signals (Continued)

Pin
Number

Signal
Mnemonic

Signal Name and Description

A-8

Serial Interconnections
A

EIA-530 interface transmitter and receiver parameters applicable to
the MVME162FX are listed in Tables A-5 and A-6.

Table A-5. EIA-530 Interface Transmitter Characteristics

Parameter
Value

Unit
Minimum Maximum

Differential output voltage (absolute, with 100Ω load) 2.0 V

Open circuit differential voltage output (absolute) 6.0 V

Output offset voltage (with 100Ω load) 3.0 V

Short circuit output current (for any voltage between –7V and
+7V)

±180 mA

Power off output current (for any voltage between
–7V and +7V)

±100 µA

Output transition time (with 100Ω, 15pF load) 15 ns

Table A-6. EIA-530 Interface Receiver Characteristics

Parameter
Value

Minimum Maximum
Unit

Differential input voltage ±12 V

Input offset voltage ±12 V

Differential input high threshold voltage 200 mV

Differential input low threshold voltage –200 mV

Differential input hysteresis 50 mV

Input impedance (without termination resistors) 10 KΩ

EIA-485/EIA-422 Connections

A-9

A

EIA-485/EIA-422 Connections
The EIA-485 and EIA-422 standards define a balanced (double-
ended) electrical interface, which is used for transmission of serial
binary data, both synchronous and asynchronous. As used here,
they use the same DB25 connector and pin assignments as does
EIA-530. EIA-485 is a low cost differential multidrop driver and
receiver standard. The quadruple differential line drivers and
receivers that are used in this module are tri-state. They meet the
requirements of EIA-485 and EIA-422.

Table A-7 lists the EIA-485/EIA-422 interconnections that are
available at serial port B (SERIAL PORT 2 on the front panel) when the
port is configured via serial interface modules as an EIA-485 port or
as an EIA-422 DCE or DTE port.

Table A-7. Serial Port B EIA-485/EIA-422 Interconnect Signals

Pin
Number

Signal
Mnemonic

Signal Name and Description

1 Not used.

2 TxD_A Transmit Data (A). Data to be transmitted; output from DTE to DCE.

3 RxD_A Receive Data (A). Data which is demodulated from the receive line;
input from DCE to DTE.

4 Not used.

5 Not used.

6 Not used.

7 SIG GND Signal Ground. Common return line for all signals.

8 Not used.

9 RxC_B Receive Signal Element Timing—DCE (B). Control signal that clocks
input data.

10 Not used.

11 Not used.

12 TxC_B Transmit Signal Element Timing—DCE (B). Control signal that clocks
input data.

13 Not used.

14 TxD_B Transmit Data (B). Data to be transmitted; output from DTE to DCE.

A-10

Serial Interconnections
A

Interface Characteristics

In specifying parameters for serial binary data interchange between
DTE and DCE devices, the EIA-485/EIA-422 standard assumes the
use of balanced lines. Balanced-line data interchange is generally
employed in preference to unbalanced-line data interchange where
any of the following conditions prevail:

❏ The interconnection cable is too long for effective unbalanced
operation.

❏ The interconnection cable is exposed to extraneous noise
sources that may cause an unwanted voltage in excess of ±1V
measured differentially between the signal conductor and
circuit common at the load end of the cable, with a 50Ω
resistor substituted for the generator.

❏ It is necessary to minimize interference with other signals.

15 TxC_A Transmit Signal Element Timing—DCE (A). Control signal that clocks
input data.

16 RxD_B Receive Data (B). Data which is demodulated from the receive line;
input from DCE to DTE.

17 RxC_A Receive Signal Element Timing—DCE (A). Control signal that clocks
input data.

18 Not used.

19 Not used.

20 Not used.

21 Not used.

22 Not used.

23 Not used.

24 Not used.

25 Not used.

Table A-7. Serial Port B EIA-485/EIA-422 Interconnect Signals (Continued)

Pin
Number

Signal
Mnemonic

Signal Name and Description

EIA-485/EIA-422 Connections

A-11

A

❏ Inversion of signals may be required (e.g., plus polarity
MARK to minus polarity MARK may be achieved by
inverting the cable pair).

EIA-485 interface transmitter (generator) and receiver (load)
parameters applicable to the MVME162FX are listed in Tables A-8
and A-9.

Table A-8. EIA-485 Interface Transmitter (Generator) Characteristics

Parameter
Value

Unit
Minimum Maximum

Differential output voltage (absolute, with 100Ω ± 1% load) 2.0 V

Open circuit differential voltage output (absolute) 6.0 V

Output offset voltage (with 100Ω ± 1% load) 3.0 V

Short circuit output current ±180 mA

Power off output current (for any voltage between
–0.25V and +6.0V)

±100 µA

Output transition time (with 54Ω ± 1% load) 120 ns

Table A-9. EIA-485 Interface Receiver (Load) Characteristics

Parameter
Value

Minimum Maximum
Unit

Differential input voltage ±12 V

Input offset voltage ±12 V

Differential input high threshold voltage +200 mV

Differential input low threshold voltage –200 mV

Differential input hysteresis 50 (typical) mV

Input impedance (without termination resistors) 12 KΩ

A-12

Serial Interconnections
A

Proper Grounding
An important subject to consider is the use of ground pins. There
are two pins labeled GND. Pin 7 is the signal ground and must be
connected to the distant device to complete the circuit. Pin 1 is the
chassis ground, but it must be used with care. The chassis is
connected to the power ground through the green wire in the
power cord and must be connected to be in compliance with the
electrical code.

The problem is that when units are connected to different electrical
outlets, there may be several volts of difference in ground potential.
If pin 1 of each device is interconnected with the others via cable,
several amperes of current could result. This condition may not
only be dangerous for the small wires in a typical cable, but may
also produce electrical noise that causes errors in data transmission.
That is why Tables A-1, A-4, and A-7 show no connection for pin 1.
Normally, pin 7 (signal ground) should only be connected to the
chassis ground at one point; if several terminals are used with one
computer, the logical place for that point is at the computer. The
terminals should not have a connection between the logic ground
return and the chassis.

B

B-1

BIndustryPack Interconnections

Introduction
Up to four IndustryPack (IP) modules may be installed on the
MVME162FX. For each IP module, there are two 50-pin plug
connectors on the MVME162FX: J2/J3, J7/J8, J13/J14, and J18/J19.
For external cabling to the IP modules, four 50-pin IDC connectors
(J5, J6, J16, and J17) are provided behind the MVME162FX front
panel. Pin assignments are the same for both types of connectors.
The following table lists the pin numbers, signal mnemonics, and
signal descriptions for the IndustryPack logic interface.

Pin
Number

Signal
Mnemonic

Signal Name and Description

1 GND Ground. First of four ground pins. Serves as zero-volt reference
for logic signals, and as return path for the power supplies
furnishing operating voltages to the IndustryPack.

2 CLK Clock. An 8 MHz clock signal supplied to the IndustryPack by
the MVME162FX. Synchronizes all data transfers to or from the
IndustryPack.

3 Reset* Reset. Driven by the MVME162FX to the IndustryPack to halt all
IP activity and reset the IP circuitry to a known state.

4-19 D0-D15 Data Bus (bits 0-15). The 16 lines of the data bus used to read
and write data between the MVME162FX and the IndustryPack.

20, 21 BS0*, BS1* Byte Select. Byte select lines; used on 16-bit IPs to support byte
writes. BS0* selects the low or odd byte (D0-D7). BS1* selects the
high or even byte (D8-D15).

22 –12V –12 Vdc Power. Used primarily to power IndustryPack analog
and communication functions.

23 +12V +12 Vdc Power. Used primarily to power IndustryPack analog
and communication functions.

24 +5V +5 Vdc Power. First of two +5V pins. Primary supply for digital
logic functions on the IndustryPack.

B-2

IndustryPack Interconnections

B

25, 26 GND Ground. Second and third of four ground pins. Serve as zero-
volt reference for logic signals, and as return path for the power
supplies furnishing operating voltages to the IndustryPack.

27 +5V +5 Vdc Power. Second of two +5V pins. Primary supply for
digital logic functions on the IndustryPack.

28 R/W* Read/Write. Indicates the direction of data movement on the
data bus. High indicates a read cycle (data lines driven by the
IP); low indicates a write cycle (data lines driven by the
MVME162FX).

29 IDSel* IndustryPack ID. First of four ‘‘select’’ lines driven by the
MVME162FX to enable the IP. This line is used to read a 32-byte
ROM containing the IP identification information. IDSel* is not
bussed; the signal is unique to each IndustryPack.

30 DMAReq0 DMA Request 0. One of two DMA request lines; driven by the
IndustryPack to indicate that the IP wishes to have a DMA cycle
performed on DMA channel 0.

31 MemSel* Memory Select. Second of four ‘‘select’’ lines driven by the
MVME162FX to enable the IP. This line is used in memory read
or write cycles. MemSel* is not bussed; the signal is unique to
each IndustryPack. An IP need not respond to MemSel* if it has
no memory.

32 DMAReq1 DMA Request 1. One of two DMA request lines; driven by the
IndustryPack to indicate that the IP wishes to have a DMA cycle
performed on DMA channel 1.

33 IntSel* Interrupt Vector Select. Third of four ‘‘select’’ lines driven by
the MVME162FX to enable the IP. This line is used in reading the
IP’s interrupt vector during an interrupt acknowledge cycle.
IntSel* is not bussed; the signal is unique to each IndustryPack.
An IP need not respond to IntSel* if it has no interrupt requests
asserted.

34 DMAck* DMA Acknowledge. DMA acknowledge line driven by the
MVME162FX, used to qualify DMA cycles. DMAck* is bussed to
the four IP connectors.

Pin
Number

Signal
Mnemonic

Signal Name and Description

Introduction

B-3

B

35 IOSel* I/O Select. Fourth of four ‘‘select’’ lines driven by the
MVME162FX to enable the IP. This line is used in executing
input or output cycles. IOSel* is not bussed; the signal is unique
to each IndustryPack. I/O data width is an IP-specific function;
an IP need not respond to IntSel* if it has no I/O functions.

36 DMAck1* DMA Acknowledge 1. Not connected

37 A1 Address Line 1. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

38 DMAEnd* DMA Termination. A bidirectional line which can be used to
terminate DMA transfers. It can be asserted either by the DMA
controller or by an IndustryPack module.

39 A2 Address Line 2. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

40 Error* IP Error. Asserted by an IndustryPack module in the event of a a
non-recoverable error (e.g., component failure). Less serious
errors are signaled by interrupts.

41 A3 Address Line 3. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

42 IntReq0* Interrupt Request 0. One of two interrupt request lines; driven
by an IndustryPack to indicate that the IP is requesting service
from the MVME162FX.

43 A4 Address Line 4. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

44 IntReq1* Interrupt Request 1. One of two interrupt request lines; driven
by an IndustryPack to indicate that the IP is requesting service
from the MVME162FX.

45 A5 Address Line 5. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

Pin
Number

Signal
Mnemonic

Signal Name and Description

B-4

IndustryPack Interconnections

B

46 Strobe* Function Strobe. Available for use as an input to the IP module
by a strobe or clock signal related to the bus interface logic. Can
be connected or disconnected on the MVME162FX via jumper
header J25.

47 A6 Address Line 6. One of six address lines; driven by the
MVME162FX to address I/O locations on the IndustryPack
module designated by the four ‘‘select’’ lines.

48 Ack* Data Acknowledge. Asserted by an IndustryPack module to
terminate each data transfer.

49 +5STBY +5 Vdc Standby. Second of two +5V pins. Available for standby
functions on the IndustryPack, such as non-volatile memory,
real-time clocks, etc.

50 GND Ground. Fourth of four ground pins. Serves as zero-volt
reference for logic signals, and as return path for the power
supplies furnishing operating voltages to the IndustryPack.

Pin
Number

Signal
Mnemonic

Signal Name and Description

C

C-1

CDisk/Tape Controller Data

Controller Modules Supported
The following VMEbus disk/tape controller modules are
supported by the 162Bug. The default address for each controller
type is First Address and the controller can be addressed by First
CLUN during commands BH, BO, or IOP, or during TRAP #15
calls .DSKRD or .DSKWR. Note that if another controller of the
same type is used, the second one must have its address changed by
its onboard jumpers and/or switches, so that it matches Second
Address and can be called up by Second CLUN.

Notes 1. If an MVME162FX with an SCSI port is used, the MVME162FX
module has CLUN 0.

2. For MVME162FXs, the first MVME320 has CLUN $11, and the
second MVME320 has CLUN $12.

Controller Type
First

CLUN
First

Address
Second
CLUN

Second
Address

CISC Embedded Controller $00
(NOTE 1)

-- -- --

MVME320 - Winchester/Floppy
Controller

$11
(NOTE 2)

$FFFFB000 $12
(NOTE 2)

$FFFFAC00

MVME323 - ESDI Winchester
Controller

$08 $FFFFA000 $09 $FFFFA200

MVME327A - SCSI Controller $02 $FFFFA600 $03 $FFFFA700

MVME328 - SCSI Controller $06 $FFFF9000 $07 $FFFF9800

MVME328 - SCSI Controller $16 $FFFF4800 $17 $FFFF5800

MVME328 - SCSI Controller $18 $FFFF7000 $19 $FFFF7800

MVME350 - Streaming Tape
Controller

$04 $FFFF5000 $05 $FFFF5100

C-2

Disk/Tape Controller Data

C

Default Configurations

Note SCSI Common Command Set (CCS) devices are only the ones tested
by Motorola Computer Group.

CISC Embedded Controllers -- 7 Devices

MVME320 -- 4 Devices

Controller LUN Address Device LUN Device Type

0 $xxxxxxxx 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable flexible direct access

(TEAC style)
- CD-ROM
- Sequential access

Controller LUN Address Device LUN Device Type

11 $FFFFB000 0
1
2
3

Winchester hard drive
Winchester hard drive
5-1/4" DS/DD 96 TPI floppy drive12 $FFFFAC00
5-1/4" DS/DD 96 TPI floppy drive

Default Configurations

C-3

C

MVME323 -- 4 Devices

MVME327A -- 9 Devices

Controller LUN Address Device LUN Device Type

8 $FFFFA000 0
1
2
3

ESDI Winchester hard drive
ESDI Winchester hard drive
ESDI Winchester hard drive9 $FFFFA200
ESDI Winchester hard drive

Controller LUN Address Device LUN Device Type

2 $FFFFA600 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable flexible direct access

(TEAC style)
- CD-ROM
- Sequential access

3 $FFFFA700

80
81

Local floppy drive

Local floppy drive

C-4

Disk/Tape Controller Data

C

MVME328 -- 14 Devices

MVME350 -- 1 Device

Controller LUN Address Device LUN Device Type

6 $FFFF9000 00
08
10
18
20
28
30

SCSI Common Command Set
(CCS), which may be any of these:

- Removable flexible direct access
(TEAC style)

- CD-ROM
- Sequential access

7 $FFFF9800

16 $FFFF4800

40
48
50
58
60
68
70

Same as above, but these
will only be available if
the daughter card for the
second SCSI channel is present.

17 $FFFF5800

18 $FFFF7000

19 $FFFF7800

Controller LUN Address Device LUN Device Type

4 $FFFF5000 0 QIC-02 streaming tape drive

5 $FFFF5100

IOT Command Parameters

C-5

C

IOT Command Parameters
The following table lists the proper IOT command parameters for
floppies used with boards such as the MVME328 and MVME162FX.

IOT Parameter

Floppy Types and Formats

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD

Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 2 2 2 2 2 2

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 1 1 1 1 1 1

Sectors/Track 10 8 9 9 F 12 24

Number of Heads = 2 2 2 2 2 2 2

Number of Cylinders = 50 28 28 50 50 50 50

Precomp. Cylinder = 50 28 28 50 50 50 50

Reduced Write Current
Cylinder =

50 28 28 50 50 50 50

Step Rate Code = 0 0 0 0 0 0 0

Single/Double DATA
Density =

D D D D D D D

Single/Double TRACK
Density =

D D D D D D D

Single/Equal_in_all
Track Zero Density =

S E E E E E E

Slow/Fast Data Rate = S S S S F F F

C-6

Disk/Tape Controller Data

C

Notes 1. All numerical parameters are in hexadecimal unless otherwise
noted.

2. The DSDD5 type floppy is the default setting for the debugger.

IOT Parameter

Floppy Types and Formats

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD

Other Characteristics

Number of Physical
Sectors

0A00 0280 02D0 05A0 0960 0B40 1680

Number of Logical
Blocks (100 in size)

09F8 0500 05A0 0B40 12C0 1680 2D00

Number of Bytes in
Decimal

653312 327680 368460 737280 122880
0

14745
60

294912
0

Media Size/Density 5.25
/DD

5.25
/DD

5.25
/DD

3.5
/DD

5.25
/HD

3.5
/HD

3.5
/ED

D

D-1

DNetwork Controller Data

Network Controller Modules Supported
The following VMEbus network controller modules are supported
by the MVME162Bug. The default address for each type and
position is showed to indicate where the controller must reside to
be supported by the MVME162Bug. The controllers are accessed via
the specified CLUN and DLUNs listed here. The CLUN and
DLUNs are used in conjunction with the debugger commands
NBH, NBO, NIOP, NIOC, NIOT, NPING, and NAB, and also with
the debugger system calls .NETRD, .NETWR, .NETFOPN,
.NETFRD, .NETCFIG, and .NETCTRL.

Controller
Type

CLUN DLUN Address
Interface

Type

MVME162FX $00 $00 $FFF46000 Ethernet

MVME376 $02 $00 $FFFF1200 Ethernet

MVME376 $03 $00 $FFFF1400 Ethernet

MVME376 $04 $00 $FFFF1600 Ethernet

MVME376 $05 $00 $FFFF5400 Ethernet

MVME376 $06 $00 $FFFF5600 Ethernet

MVME376 $07 $00 $FFFFA400 Ethernet

MVME374 $10 $00 $FF000000 Ethernet

MVME374 $11 $00 $FF100000 Ethernet

MVME374 $12 $00 $FF200000 Ethernet

MVME374 $13 $00 $FF300000 Ethernet

MVME374 $14 $00 $FF400000 Ethernet

MVME374 $15 $00 $FF500000 Ethernet

D-2

Network Controller Data

D

E

E-1

ETroubleshooting CPU Boards:
Solving Startup Problems

Introduction
In the event of difficulty with your CPU board, try the simple
troubleshooting steps on the following pages before calling for help
or sending the board back for repair. Some of the procedures will
return the board to the factory debugger environment. (The board
was tested under these conditions before it left the factory.) The
selftests may not run in all user-customized environments.

Table E-1. Basic Troubleshooting Steps for ALL CPU Boards

Condition Possible Problem Try This:

I. Nothing works,
no display on
the terminal.

A. If the RUN or
PWR or +12V
LED is not lit,
the board may
not be getting
correct power.

1. Make sure the system is plugged in.
2. Check that the board is securely installed in its backplane

or chassis.
3. Check that all necessary cables are connected to the board,

per this manual.
4. Check for compliance with System Considerations, per

this manual.
5. Review the Installation and Startup procedures, per this

manual. In most cases, this includes a step-by-step
powerup routine. Try it.

B. If the LEDs are
lit, the board
may be in the
wrong slot.

1. For VMEmodules, the CPU board should be in the first
(leftmost) slot.

2. Also check that the “system controller” function on the
board is enabled, per this manual.

C. The “system
console”
terminal may
be configured
incorrectly.

Configure the system console terminal per this manual.

E-2

Troubleshooting CPU Boards: Solving Startup Problems

E

II. There is a
display on the
terminal, but
input from the
keyboard
and/or mouse
has no effect.

A. The keyboard or
mouse may be
connected
incorrectly.

Recheck the keyboard and/or mouse connections and
power.

B. Board jumpers
may be
configured
incorrectly.

Check the board jumpers per this manual.

C. You may have
invoked flow
control by
pressing a
HOLD or PAUSE
key, or by
typing:
<CTRL>-S
Also, a HOLD
LED may be lit.

Press the HOLD or PAUSE key again.
If this does not free up the keyboard, type in:
<CTRL>-Q

YOU ARE FINISHED (DONE) WITH THIS TROUBLESHOOTING PROCEDURE.
PROCEED WITH THE TROUBLESHOOTING PROCEDURE FOR YOUR PARTICULAR CPU BOARD,
AS GIVEN IN ONE OF THE FOLLOWING TABLES.

Table E-1. Basic Troubleshooting Steps for ALL CPU Boards (Continued)

Condition Possible Problem Try This:

Introduction

E-3

E

Table E-2. Troubleshooting MVME147 Series Boards Only

Condition Possible Problem Try This:

III. Debug prompt
147-Bug>
does not appear
at powerup,
and the board
does not
autoboot.

A. Debugger
EPROM may be
missing.

1. Disconnect all power from your system.
2. Check that the proper debugger EPROM is installed per

this manual.
3. Reconnect power.

Performing the next step will
change some parameters that
may affect your system
operation.

4. Restart the system by “double-button reset”: press the
RESET and ABORT switches at the same time; release
RESET first, wait five seconds, then release ABORT.

5. If the debug prompt appears, go to step IV. If the debug
prompt does not appear, go to step VI.

B. The board may
need to be reset.

!
Caution

E-4

Troubleshooting CPU Boards: Solving Startup Problems

E

IV. Debug prompt
147-Bug>
appears at
powerup, but
the board does
not autoboot.

A. The initial
debugger
environment
parameters
may be set
incorrectly.

1. Type in:
env;d <CR>
This sets up the default parameters for the debugger
environment.

2. When prompted to Update Non-Volatile RAM, type in:
y <CR>

3. When prompted for clock speed (in MHz), change it only if
it is not correct.

4. When prompted to Reset System, type in:
y <CR>
After a cold start, the debug prompt:
147-Bug>
is displayed.

5. Change to the diagnostic directory by typing:
sd <CR>
Now the prompt should be:
147-Diag>

6. Run the selftests by typing in:
st <CR>
The tests take as much as 10 minutes, depending on RAM
size. They are complete when the prompt returns. (The
onboard selftest is a valuable tool in isolating defects.)

7. The system may indicate that it has passed all the selftests.
Or, it may indicate a test that failed. If neither happens,
enter:
de <CR>
Any errors should now be displayed. If there are any
errors, go to step VI. If there are no errors, go to step V.

B. There may be
some fault in the
board hardware.

V. The debugger is
in system mode
and the board
autoboots, or
the board has
passed selftests.

A. No problems —
troubleshooting
is done.

No further troubleshooting steps are required.

Note Even if the board passes all tests, it may still
be bad. The selftest does not try out all
functions in the board (for example, SCSI or
VMEbus tests).

Table E-2. Troubleshooting MVME147 Series Boards Only (Continued)

Condition Possible Problem Try This:

Introduction

E-5

E

VI. The board has
failed one or
more of the
tests listed
above, and
cannot be
corrected using
the steps given.

A. There may be
some fault in
the board
hardware or the
on-board
debugging and
diagnostic
firmware.

1. Document the problem and return the board for service.
2. Phone 1-800-222-5640.

YOU ARE FINISHED (DONE) WITH THIS TROUBLESHOOTING PROCEDURE.

Table E-2. Troubleshooting MVME147 Series Boards Only (Continued)

Condition Possible Problem Try This:

E-6

Troubleshooting CPU Boards: Solving Startup Problems

E

Table E-3. Troubleshooting MVME162 Series Boards Only

Condition Possible Problem Try This:

III. Debug prompt
162-Bug>
does not
appear at
powerup, and
the board does
not autoboot.

A. Debugger
EPROM/Flash
may be missing

1. Disconnect all power from your system.
2. Check that the proper debugger EPROM is installed per

this manual.
3. Remove the jumper from J22, pins 9 and 10. This enables

use of the EPROM instead of the Flash memory.
4. Reconnect power. Restart the system.
5. If the debug prompt appears, go to step IV or step V, as

indicated. If the debug prompt does not appear, go to step
VI.

B. The board may
need to be reset.

IV. Debug prompt
162-Bug>
appears at
powerup, but
the board does
not autoboot.

A. The initial
debugger
environment
parameters
may be set
wrong.

1. Start the onboard calendar clock and timer. Type:
set mmddyyhhmm <CR>
where the characters indicate the month, day, year, hour,
and minute. The date and time will be displayed.

Performing the next step will
change some parameters that
may affect your system
operation.

4. Type in:
env;d <CR>
This sets up the default parameters for the debugger
environment.

3. When prompted to Update Non-Volatile RAM, type in:
y <CR>

4. When prompted to Reset Local System, type in:
y <CR>
After a cold start, the debug prompt:
162-Bug>
is displayed. (continues>)

B. There may be
some fault in the
board hardware.

!
Caution

Introduction

E-7

E

5. Change to the diagnostic directory by typing:
sd <CR>
Now the prompt should be:
162-Diag>

6. Run the selftests by typing in:
st <CR>
The tests take as much as 10 minutes, depending on RAM
size. They are complete when the prompt returns. (The
onboard selftest is a valuable tool in isolating defects.)

7. The system may indicate that it has passed all the selftests.
Or, it may indicate a test that failed. If neither happens,
enter:
de <CR>
Any errors should now be displayed. If there are any
errors, go to step VI. If there are no errors, go to step V.

V. The debugger is
in system mode
and the board
autoboots, or
the board has
passed
selftests.

A. No problems —
troubleshooting
is done.

No further troubleshooting steps are required.

Note Even if the board passes all tests, it may still
be bad. The selftest does not try out all
functions in the board (for example, SCSI or
VMEbus tests).

VI. The board has
failed one or
more of the
tests listed
above, and
cannot be
corrected using
the steps given.

A. There may be
some fault in
the board
hardware or the
on-board
debugging and
diagnostic
firmware.

1. Document the problem and return the board for service.
2. Phone 1-800-222-5640.

YOU ARE FINISHED (DONE) WITH THIS TROUBLESHOOTING PROCEDURE.

Table E-3. Troubleshooting MVME162 Series Boards Only (Continued)

Condition Possible Problem Try This:

E-8

Troubleshooting CPU Boards: Solving Startup Problems

E

Table E-4. Troubleshooting MVME166/167/176/177/187/188/188A Boards Only

Condition Possible Problem Try This:

III. Debug prompt
1xx-Bug>
does not
appear at
powerup, and
the board does
not autoboot.

A. Debugger
EPROM/Flash
may be missing

1. Disconnect all power from your system.
2. Check that the proper debugger EPROM or debugger

Flash memory is installed per this manual.
3. Reconnect power.
4. Restart the system by “double-button reset”: press the

RESET and ABORT switches at the same time; release
RESET first, wait seven seconds, then release ABORT.

5. If the debug prompt appears, go to step IV or step V, as
indicated. If the debug prompt does not appear, go to step
VI.

B. The board may
need to be reset.

IV. Debug prompt
1xx-Bug>
appears at
powerup, but
the board does
not autoboot.

A. The initial
debugger
environment
parameters
may be set
incorrectly.

1. Start the onboard calendar clock and timer. Type:
set mmddyyhhmm <CR>
where the characters indicate the month, day, year, hour,
and minute. The date and time will be displayed.

Performing the next step will
change some parameters that
may affect your system
operation.

2. Type in:
env;d <CR>
This sets up the default parameters for the debugger
environment.

3. When prompted to Update Non-Volatile RAM, type in:
y <CR>

4. When prompted to Reset Local System, type in:
y <CR>

5. After clock speed is displayed, immediately (within five
seconds) press the Return key:
<CR>
or
BREAK
to exit to the System Menu. Then enter a 3 for “Go to
System Debugger” and Return:
3 <CR>
Now the prompt should be:
1xx-Diag> (continues>)

B. There may be
some fault in the
board hardware.

!
Caution

Introduction

E-9

E

6. You may need to use the cnfg command (see your board
Debugger Manual) to change clock speed and/or Ethernet
Address, and then later return to:
env <CR>
and step 3.

7. Run the selftests by typing in:
st <CR>
The tests take as much as 10 minutes, depending on RAM
size. They are complete when the prompt returns. (The
onboard selftest is a valuable tool in isolating defects.)

8. The system may indicate that it has passed all the selftests.
Or, it may indicate a test that failed. If neither happens,
enter:
de <CR>
Any errors should now be displayed. If there are any
errors, go to step VI. If there are no errors, go to step V.

V. The debugger is
in system mode
and the board
autoboots, or
the board has
passed
selftests.

A. No problems —
troubleshooting
is done.

No further troubleshooting steps are required.

Note Even if the board passes all tests, it may still
be bad. The selftest does not try out all
functions in the board (for example, SCSI or
VMEbus tests).

VI. The board has
failed one or
more of the
tests listed
above, and
cannot be
corrected using
the steps given.

A. There may be
some fault in
the board
hardware or the
on-board
debugging and
diagnostic
firmware.

1. Document the problem and return the board for service.
2. Phone 1-800-222-5640.

YOU ARE FINISHED (DONE) WITH THIS TROUBLESHOOTING PROCEDURE.

Table E-4. Troubleshooting MVME166/167/176/177/187/188/188A Boards Only

Condition Possible Problem Try This:

E-10

Troubleshooting CPU Boards: Solving Startup Problems

E

Table E-5. Troubleshooting MVME197 Series Boards Only

Condition Possible Problem Try This:

III. Debug prompt
197-Bug>
does not
appear at
powerup, and
the board does
not autoboot.

A. Debugger
EPROM/Flash
may be missing

1. Disconnect all power from your system.
2. Check that the proper debugger EPROM or debugger

Flash memory is installed per this manual.
3. Reconnect power.
4. Restart the system by “double-button reset”: press the

RESET and ABORT switches at the same time; release
RESET first, wait seven seconds, then release ABORT.

5. You will get a prompt asking if you want to continue
in debugger with double button reset (N/Y)?
Type in:
y <CR>

6. If the debug prompt appears, go to step IV or step V, as
indicated. If the debug prompt does not appear, go to step
VI.

B. The board may
need to be reset.

Introduction

E-11

E

IV. Debug prompt
197-Bug>
appears at
powerup, but
the board does
not autoboot.

A. The initial
debugger
environment
parameters
may be set
incorrectly.

1. Start the onboard calendar clock and timer. Type:
set mmddyyhhmm <CR>
where the characters indicate the month, day, year, hour,
and minute. The date and time will be displayed.

Performing the next step will
change some parameters that
may affect your system
operation.

2. Type in:
env;d <CR>
This sets up the default parameters for the debugger
environment.

3. When prompted to Update Non-Volatile RAM, type in:
y <CR>

4. When prompted to Reset Local System, type in:
y <CR>

5. After clock speed is displayed, and the line
Idle MPU(s): xxxx
is displayed, immediately (within five seconds) press the
Return key:
<CR>
or
BREAK
to exit to the System Menu. Then enter a 3 for “Go to
System Debugger” and Return:
3 <CR>
Now the prompt should be:
197-Diag> (continues>)

B. There may be
some fault in the
board hardware.

Table E-5. Troubleshooting MVME197 Series Boards Only (Continued)

Condition Possible Problem Try This:

!
Caution

E-12

Troubleshooting CPU Boards: Solving Startup Problems

E

6. You may need to use the cnfg command (see your board
Debugger Manual) to change clock speed and/or Ethernet
Address, and then later return to:
env <CR>
and step 3.

7. Run the selftest by typing in:
st <CR>
The tests take as much as 10 minutes, depending on RAM
size. They are complete when the prompt returns. (The
onboard selftest is a valuable tool in isolating defects.)

8. The system may indicate that it has passed all the selftests.
Or, it may indicate a test that failed. If neither happens,
enter:
de <CR>
Any errors should now be displayed. If there are any
errors, go to step VI. If there are no errors, go to step V.

V. The debugger is
in system
mode and the
board
autoboots, or
the board has
passed selftests.

A. No problems —
troubleshooting
is done.

No further troubleshooting steps are required.

Note Even if the board passes all tests, it may still
be bad. The selftest does not try out all
functions in the board (for example, SCSI or
VMEbus tests).

VI. The board has
failed one or
more of the
tests listed
above, and
cannot be
corrected using
the steps given.

A. There may be
some fault in
the board
hardware or the
on-board
debugging and
diagnostic
firmware.

1. Document the problem and return the board for service.
2. Phone 1-800-222-5640.

YOU ARE FINISHED (DONE) WITH THIS TROUBLESHOOTING PROCEDURE.

Table E-5. Troubleshooting MVME197 Series Boards Only (Continued)

Condition Possible Problem Try This:

Index

IN-1

Symbols
+12 Vdc power 1-14, 2-18
+5 Vdc power 2-18

Numerics
162Bug

address as a parameter 4-4
address formats 4-4
address parameter formats 4-5
addresses in command lines 4-4
arithmetic expessions 4-2
base and top addresses 4-6
command line 4-1
command line syntax 4-2
command set 4-20
console port 4-8
creating vector tables 4-13
debugger command set 4-20
debugger package 3-1
description 3-1
disk I/O support 3-17
disk/tape controller data C-1
entering command lines 4-1
example, creating vector table 4-14
example, exception handler 4-15
example, relocatable module 4-6
example, tracing instruction 4-12
exception vectors 4-11
expression as a parameter 4-2
floating point support 4-17
generalized exception handler 4-15
hardware functions 4-11
implementation of 3-3
installation 3-4
metasymbols 4-2
network controller data D-1
offset registers 4-6
operating environment 4-10
port 0 or 00 4-8
port numbers 4-8
ports used 4-11

162Bug continued
prompt 3-8
pseudo-registers 4-6
relative address+offset format 4-6
serial port 1 4-8
stack 3-15
starting address 3-15
syntactic variables 4-2
system routines 4-9
using the debugger 4-1
vector base register 4-12
vector table and workspace 4-10
vector tables 4-10

162Bug (see debug monitor and
MVME162Bug) 2-2, 4-1

162Bug debugger, use of 4-1
27C040 PROM 3-3
28F008SA Flash 3-3
5-1/4 inch DS/DD 96 TPI floppy drive C-2
53C710 (SCSI controller) 1-27
82596CA (see Ethernet and LAN) 1-25, 1-26,

3-22

A
ABORT switch 1-14, 1-32, 3-13
adapter board (see P2 adapter board) 1-1
address, DRAM 2-17
address, Flash/PROM 3-15
addresses in debugger command lines 4-4
arbitration priority 1-29
arguments, command line 4-1
arithmetic operators 4-2
ASIC (Application-Specific Integrated Circuits)

(see MCchip and VMEchip2) 1-2
assembler/disassembler 4-9
assertion, signal 1-12
autoboot 3-9
autojumpering 2-16

Index

IN-2

I
N
D
E
X

B
backplane connectors P1 and P2 2-17
backplane jumpers 2-15
Backus-Naur syntax 4-2
base address of IndustryPacks 5-19
base identifier, numeric values 4-3
Battery Backed Up RAM (BBRAM) and Clock

(see MK48T08 and NVRAM) 5-3
battery backup function 1-18
battery backup select jumpers 2-9
battery care 1-19
battery-backed-up RAM (BBRAM) and

clock 1-21
baud rates 1-22, 3-8
BG (bus grant) 2-15
BH (Bootstrap and Halt) 3-18
binary numbers 1-11
block diagram, MVME162FX 1-13
block size, logical 3-17
blocks versus sectors 3-17
BO (Bootstrap Operating System) 3-18
board connectors 1-31
Board Information Block (BIB) 5-1
Board Mode, 162Bug 3-5
board-level hardware features 1-1
BOOTP protocol module 3-23
Bootstrap and Halt (BH) 3-18
Bootstrap Operating System (BO) 3-18
Bootstrap Protocol (BOOTP) 3-23
break function 3-13
BREAK key 3-13
burst transfers 1-15
bus grant (BG) 2-15
byte size 1-12

C
C programming language 3-3
cabling 2-17
cache 1-15
calling system utilities from user programs 4-9
character input/output 4-9
checksum data 5-3
CISC Embedded Controller(s) C-1
Clear To Send (CTS) 3-8
clock chip 1-21

clock select header (J11) 2-8
clock select header (J12) 2-8
clock select jumpers 2-8
clock speed, MPU 3-14
CLUN (controller LUN) C-1, D-1
CNFG command 5-1
command identifier 4-1
command line, debugger 4-1
command set (see 162Bug debugger command

set) 4-20
commands, debug 4-20
configuration, controllers/devices 3-20
configurations, default disk/tape

controller C-2
configuration, hardware 3-4
Configure (CNFG) and Environment (ENV)

commands 5-1
configure BIB (Board Information Block) 5-1
configure debug parameters 5-3
configuring

base address of Industry Packs 5-19
Industry Packs 5-19
VMEbus interface 5-12

connection diagrams, MVME712x 2-20
connector P2 4-8
connectors 1-2, 1-31, 2-14
console port 4-8
control bit, meaning 1-12
control/key commands 3-15
controller LUN (CLUN) C-1
controller modules C-1
cooling requirements 1-8
CTS (Clear To Send) signal 3-8

D
data bus structure 1-15
data circuit-terminating equipment (DCE) 1-22,

A-2
data terminal equipment (DTE) 1-22, A-2
data/address sizes 1-12
date and time, setting 3-8, E-6
debug monitor (see 162Bug and

MVME162Bug) 2-2
debug port 4-8

Index

IN-3

I
N
D
E
X

debugger
address parameter formats 4-5
commands 4-20
general information 3-1
operating environment, preserving 4-10
prompt 4-1
description 3-1

decimal numbers 1-11
decoder, GCSR 1-37
default 162Bug controller and device

parameters 3-20
default baud rate (see baud rates) 3-8
device LUN (DLUN) C-2, D-1
device probe function 3-18
diagnostics 3-2, 3-27
direct access devices C-2, C-4
direct memory access (DMA) 1-25
directories, switching 3-27
disk I/O

commands, 162Bug 3-18
error codes 3-21
support, 162Bug 3-17
via 162Bug commands 3-18
via 162Bug system calls 3-19

disk/tape
controller data C-1
controller default configurations C-2
controller modules supported C-1

DLUN (device LUN) C-2, D-1
DMA (direct memory access) 1-25
documentation, related 1-2
double-button reset 3-12, 5-4
double precision real format (floating point

data) 4-18
downloading object files 4-9
DRAM (dynamic RAM) 1-16

base address 2-17
mezzanines 3-15
options 1-16
performance 1-30

DTE (data terminal equipment) 1-22
dynamic RAM (see DRAM) 1-16, 2-17

E
edge-significant signals 1-12
EIA-232-D

connection diagrams 2-21, 2-28
interconnections A-1
port(s) 3-7, 4-8
SIMM part numbers 2-6

EIA-485/EIA-422
interconnections A-9
interface characteristics A-10
signals 1-25, A-9

EIA-485/EIA-422 connection diagrams 2-32
EIA-530

interconnections A-5
interface characteristics A-7
signals 1-25, A-5
connection diagrams 2-26

EIA-530/V.36 SIMM part numbers 2-6
elevated temperature operation 1-9
entering and debugging programs 4-9
entering debugger command lines 4-1
ENV command 5-3

parameters 5-4
setting up IPs 5-19

Environment (ENV) and Configure (CNFG)
commands 5-1

environment commands 3-5
environment, operating 1-9
EPROM 1-20
EPROM and Flash 1-20
EPROM size select header (J21) 2-10
EPROM/Flash cycle times 1-30
error codes, 162Bug 3-21, 3-23
error codes, disk I/O 3-21
ESDI Winchester hard drive C-3
Ethernet (see 82596 and LAN) 1-26, D-1

controllers D-1
interface 1-26
packets 3-22
station address 1-26
transceiver interface 1-26

examples
address formats 4-4
displaying board information block 5-1
exception handler usage 4-15

Index

IN-4

I
N
D
E
X

examples continued
exception vector 4-12
numeric value expression 4-3
relocatable module 4-6
valid expressions 4-3

exception handler 4-15
exception vectors 4-11
exponent field (floating point data) 4-17
expressions, arithmetic 4-2
extended addressing 2-17
extended precision real format (floating point

data) 4-19

F
facilities 3-27
FAIL LED 1-14
false (bit state) 1-12
FCC compliance 1-11
features 1-6
firmware overview 3-1
Flash (see 28F008SA Flash) 3-3
Flash memory 1-20

initializing 3-8
programming 3-24

flexible diskettes C-2
floating point instructions 4-17
floating point support 4-17
floating point unit (FPU) 4-17
floppy diskettes C-4
floppy drive C-2, C-3
four-byte size 1-12
FPU (floating point unit) 4-17
front panel switches and indicators 1-14
functional description 1-14
fuse (F1) 2-18
fuse (F2) 2-18
FUSE (LAN power) LED 1-14

G
GCSR (Global Control and Status

Registers) 2-18, 3-26
GCSR board control register 1-38
GCSR method 3-26
GCSR register GPCSR0 5-10
general control register 5-20
general information, debugger 3-1

general purpose readable jumpers header
(J22) 2-10

global bus timeout 2-18
Global Control and Status Registers

(GCSR) 2-18, 3-26
grounding

proper A-12

H
handshaking 3-8
hard disk drive C-3
hardware interrupts 1-28
hardware preparation 2-2
headers, setting 2-3, 3-4
hexadecimal characters 1-11
host port 4-8
host system 4-9

I
I/O commands

IOC (I/O Control) 3-19
IOI (Input/Output Inquiry) 3-18
IOP (Physical I/O to Disk) 3-18
IOT (I/O Teach) 3-19

I/O interfaces 1-22
I/O maps 1-32
IACK (interrupt acknowledge) 2-15
Industry Pack (IP)

base address 5-19
configuration

general control registers 5-20
interrupt control registers 5-20
memory size 5-20

interfaces 1-25
interconnections B-1
Interface Controller (IP2 chip) 1-2
modules, configuring 5-19
modules, installation 2-13
specification 1-4

installation 3-4
162Bug 3-4
IP modules 2-13
MVME162FX 2-14
SIMMs 2-7
transition modules 2-15

installation and startup 3-4, E-1

Index

IN-5

I
N
D
E
X

installation, preparation for 2-2
Intel 82596 LAN Coprocessor Ethernet

Driver 3-22
interconnections

IndustryPack B-1
serial A-1, A-5, A-9

interface characteristics
EIA-232-D A-4
EIA-485/EIA-422 A-10
EIA-530 A-7

Internet Protocol (IP) 3-22
interrupt acknowledge (IACK) signal 2-15
interrupt control registers 5-20
Interrupt Stack Pointer (ISP) 3-15
interrupts, programmable 1-28
IOT command parameters C-5
IP (Industry Pack) installation on the

MVME162FX 2-13
IP bus clock header (J24) 2-12
IP bus strobe select header (J25) 2-13, 3-7
IP reset signal 1-26
IP strobe 1-26
IP strobe signal B-4
IP2 chip 1-2, 1-25
IP32 CSR bit 2-12
ISP (Interrupt Stack Pointer) 3-15

J
J15 connector 1-31
J4 connector 1-31
J9 connector 1-31
jumpers

J1 2-3
J11 3-6
J12 2-8, 3-6
J20 2-9
J21 2-10, 3-6
J22 1-16, 1-20, 2-10, 3-6, 3-15
J23 2-11
J24 2-12, 3-7
J25 2-13, 3-7

jumpers, setting 2-3, 3-4
jumpers, user-definable 2-10

L
LAN (see 82596CA and Ethernet) 1-25, 1-26

DMA transfers 1-31
FIFO buffer 1-31
LED 1-14

layout, MVME162FX 2-5
LEDs 1-14, 1-32
level-significant signals 1-11
Local Area Network (LAN) 1-25
local bus 1-15

arbiter 1-29
arbitration priority 1-29
I/O devices memory map 1-35
memory map 1-32
timeout 1-28

local bus/VMEbus interface 1-21
local I/O devices memory map 1-34
local reset operation (LRST) 1-38
local resources 1-27
local-bus-to-DRAM cycle times 1-29
location monitors 2-18
logical unit number (LUN) (see CLUN or

DLUN)
longword size 1-12
LUN (logical unit number) (see CLUN or

DLUN)

M
mantissa field (floating point data) 4-17
manual terminology 1-11
manufacturing test process 3-27
map decoder, GCSR 1-37
MC2 chip 1-2, 1-18

LCSR 2-10
MC68040 MPU 1-15

TRAP instructions 4-9
MC68LC040 MPU 1-15
MC68xx040 Cache 1-15
memory base addresses 1-29
Memory Management Units (MMUs) 4-10
memory maps 1-32

local bus 1-32
local I/O devices 1-34
VMEbus 1-37
VMEbus short I/O 1-37

Index

IN-6

I
N
D
E
X

memory options 1-16
memory requirements, 162Bug 3-14
memory size 5-20
metasymbols, 162Bug 4-2
models, MVME162FX 5
modem 1-23
MPAR (Multiprocessor Address Register) 3-25
MPCR (Multiprocessor Control Register) 3-24
MPU clock speed calculation 3-14
MPU thermal regulation header (J23) 2-11
MPU versions 1-15
multi-MPU programming considerations 1-38
multiple MVME162FXs, installation 2-18
Multiprocessor Address Register (MPAR) 3-25
Multiprocessor Control Register (MPCR) 3-24
multiprocessor support 3-24
MVME162Bug 1-16, 1-21, 3-1
MVME162Bug debugging package (see 162Bug

and debug monitor) 1-3, 2-2
MVME162FX

as Ethernet controller D-1
block diagram 1-13
board-level hardware features 1-1
connection diagrams 2-20
module installation 2-14
specifications 1-8
switches, headers, connectors, fuses, and

LEDs 2-5
MVME320 disk/tape controllers C-2
MVME323 disk/tape controller C-3
MVME327A C-3
MVME328 disk/tape controller C-4
MVME350 controller C-4
MVME374 Ethernet controller D-1
MVME376 Ethernet controller D-1
MVME712-12 1-1
MVME712-13 1-1
MVME712A 1-1
MVME712AM 1-1
MVME712B 1-1
MVME712M 1-1

installation 2-15
MVME712x 1-1

connection diagrams 2-20
serial ports 1-24

N
negation, signal 1-12
Network Auto Boot 3-11
network

boot control module 3-23
controller data D-1
controller modules D-1
I/O error codes 3-23
I/O support 3-21

Non-Volatile RAM (NVRAM) (see Battery
Backed Up RAM, BBRAM, and
MK48T08) 5-3

normal address range 1-32
no-VMEbus-interface option 1-16, 1-20, 2-3,

2-11, 3-8
numeric values, expression of 4-3
NVRAM (Non-Volatile RAM) (see Battery

Backed Up RAM, BBRAM, and
MK48T08) 5-3

O
object code 4-9
offset registers 4-6
operating environment, debugger 4-10
operational parameters 5-3
option field, command line 4-1
overview 1-1

P
P1 connector 1-31, 2-17
P2 adapter board (see adapter board) 1-1
P2 connector 1-1, 1-31, 2-17, 4-8
packed decimal real format (floating point

data) 4-19
panel, front 1-14
parameters (see default 162Bug controller and

device parameters) 3-20
part numbers, SIMM 2-4, 2-6
parts location diagram 2-5
port 1 or 01 4-8
port number(s) 4-1, 4-8
ports for debugging 4-8
ports used by debugger 4-11
power-up 3-25
program execution 3-24, 3-26
program source lines, entering 4-9

Index

IN-7

I
N
D
E
X

programmable tick timers 1-28
programming considerations, multi-MPU 1-38
programs, debugging 4-9
PROM (see 27C040 PROM) 3-3
prompt, debugger 3-8
proper grounding A-12
pseudo-registers 4-6

Q
QIC-02 streaming tape drive C-4

R
RARP/ARP protocol 3-22
readable jumpers 2-10
receivers, EIA-232-D A-4
receivers, EIA-485 A-11
receivers, EIA-530 A-8
registers used in debugging 4-6
related documentation 1-2
remote status and control connector 1-31
requirements, industry 1-5
RESET switch 1-32, 1-38, 3-12
resetting the system 1-38, 3-12, 5-4, E-3
resources, local 1-27
restarting the system 3-12
Reverse Address Resolution Protocol

(RARP) 3-22
RF emissions 1-11
RFI (radio frequency interference) 2-15
ROMboot 3-10
RUN LED 1-14

S
SCC (Serial Communications Controller) (see

Z85230) 1-22, 3-8
scientific notation (floating point data) 4-19
SCON LED 1-14
SCSI

Common Command Set (CCS) C-2, C-4
controller (53C710) 1-27
FIFO buffer 1-30
interface 1-27
LED 1-15
specification 1-4
termination 1-27, 2-19
transfers 1-30

SD command (see also directories,
switching) 3-27

sector size 3-17
self-test routines 3-25
sequential access devices C-2, C-4
Serial Communications Controller (SCC) (see

Z85230) 1-22, 3-8
serial communications interface 1-22
serial interconnections A-1
Serial Interface Module (SIMM)

installation 2-7
model numbers 1-23
part numbers 2-6
removal 2-6
selection 2-4

serial interface parameters A-4
serial interface signals A-1
serial interfaces and transition boards 1-25
serial port 2 4-8
Serial Port 2, MVME712x 1-23
Serial Port 4, MVME712x 1-24
serial port B EIA-485/EIA-422 interconnect

signals A-9
serial port B EIA-530 interconnect signals A-5
serial port interface 1-22
serial ports A-1
Set Environment to Bug/Operating System

(ENV) command 5-3
setting date and time 3-8, E-6
short I/O space 1-37, 3-26
sign field (floating point data) 4-17
signals

edge-significant 1-12
level-significant 1-11

SIMMs (Serial Interface Modules) 1-25, 2-4
installation 2-7

single precision real format (floating point
data) 4-18

slave address decoders 5-12
snooping 1-15
software initialization 1-37
software-programmable hardware

interrupts 1-28
solving startup problems E-6
source lines, program 4-9

Index

IN-8

I
N
D
E
X

special considerations for elevated temperature
operation 1-9

specifications 1-4, 1-5, 1-8
SRAM (static RAM) 1-17

options 1-17
battery backup source select header (J20) 2-9

S-record format 4-9
stack 3-15
stack pointers 4-12
startup, 162Bug 3-4, E-6
startup problems, solving E-6
STAT (status) LED 1-14
static RAM (SRAM) 1-17
static variable space 3-15
status bit, meaning 1-12
streaming tape drive (see QIC-2 streaming tape

drive) C-4
string literals 4-3
strobe signal 1-26, B-4
structure, data bus 1-15
support information 1-5
switches and indicators 1-14
switching 3-27
switching directories (see also SD

command) 3-27
synchronous/asynchronous protocols 1-22
syntactic variables, 162Bug 4-2
SYSFAIL* signal 3-14
system calls, TRAP #15 3-19
system considerations 2-17
system console 3-7
system controller function 3-5
system controller select header (J1) 2-3
System Fail (SYSFAIL*) signal 3-10
System Mode, 162Bug 3-5
system reset(SRST) 1-38
system routines 4-9

T
target vector table (see using 162Bug target vec-

tor table) 4-13
temperature, high 1-9
terminal input/output control 3-15
termination, SCSI 1-27
TFTP protocol 3-23
tick timers 1-27

time-of-day clock 1-21
timeout

global bus timeout 2-18
local bus 1-28

timeout function 1-28
timing performance 1-29
transfer type (TT) signals 1-32
transition boards and serial interfaces 1-25
transition module serial ports 1-23
transmitters, EIA-232-D A-4
transmitters, EIA-485 A-11
transmitters, EIA-530 A-8
TRAP #15 4-9
TRAP #15 system calls 3-19
Trivial File Transfer Protocol (TFTP) 3-23
troubleshooting procedures E-1
true (bit state) 1-12
TT (see transfer type) 1-32
two-byte size 1-12
TX and RX clocks 1-24

U
UDP/IP protocols 3-22
unpacking instructions 2-1
using 162Bug target vector table 4-13
using the 162Bug debugger 4-1

V
vector base register (VBR) 4-12
vector table creation 4-14
vector tables 4-13
VME LED 1-15
VMEbus

accesses to the local bus 1-37
interface and VMEchip2 1-21
interface, configuring 5-12
memory map 1-37
short I/O memory map 1-37
specification 1-4

VMEbus, "no" option 1-16, 1-20, 2-3, 2-11, 3-8
VMEbus/local bus interface 1-21
VMEchip2 1-2, 1-21

GCSR (Global Control and Status
Registers) 2-18, 3-26

Index

IN-9

I
N
D
E
X

W
watchdog timer 1-28
Winchester hard drive C-2, C-3
word size 1-12

X
XON/XOFF 3-8

Z
Z85230 Serial Communications Controller

(SCC) 1-22, 3-8

Index

IN-10

I
N
D
E
X

